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1 Introduction: Clojure, Common Lisp, and the
JVM Saga

1.1 The Clojure Equation

• Spoiler alert: Clojure = Subset of Common Lisp + JVM

1.2 A Glimpse into JVM’s Legacy

• Exploring the evolution and influence of the Java Virtual Machine

1.3 Common Lisp Unveiled

• Understanding Clojure’s roots in Common Lisp’s subset

1.4 The Timeless Legacy of Common Lisp

• A language enduring for over 40 years, set to continue for many more

1.5 My Personal Perspective

• Remember: All opinions and rantings here are solely mine

2 Tech Giants vs Microsoft in the Late ’90s

2.1 Background

• Era of rapid Internet and software development

• Microsoft dominant in the software industry

1



2.2 The Alliance: Oracle, Sun Microsystems, IBM

• Formed to challenge Microsoft’s growing influence

2.3 The Strategy

• Promoting Java and the JVM

• Aimed to counter Microsoft’s .NET framework

2.4 Key Points

• JVM’s “Write Once, Run Anywhere” philosophy as a competitive edge

• Collaboration to enhance JVM’s capabilities and adoption

• Positioning Java as a versatile, cross-platform solution

2.5 Positive Impact

• Intensified competition in software and web development

• Encouraged open standards and cross-platform compatibility

• Laid groundwork for future enterprise solutions and cloud computing

3 The Grand Vision of JVM

3.1 Universal Platform Ambition

• Envisioned to replace traditional operating systems

• “Write Once, Run Anywhere” extends to entire system operations

3.2 Handling Massive Multitasking

• Designed to efficiently manage tens of thousands of threads. . .

• Promising unparalleled concurrency and performance

3.3 JVM as the Core of Computing

• Every application, service running within the JVM ecosystem

• Seamless, integrated computing environment
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3.4 Revolutionizing System Architecture

• Moving beyond hardware and OS limitations

• Uniform experience across all devices and platforms

3.5 The Utopian Tech Future

• A world where JVM unifies and simplifies computing

• Emphasizing portability, efficiency, and scalability

• An army of Java developers

3.6 1994 Sun Micro System 32 bits

3.7 Whoop-de-doo!

4 Economic Landscape: Late ’90s vs 2023

4.1 Late ’90s

• Global capitalistic expansion

• Technology and dot-com boom, marked by speculative investments

• Assumption of infinite natural resources: environmental concerns over-
looked
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• High consumerism and stock market growth: focus on short-term gains

• Set the stage for nowadays challenges

4.2 2023: Escalating Concerns and Shifts in Global Perspec-
tive

• Civil unrest fueled by energy insecurities and geopolitical tensions

• Acute realization of finite resources: global policy shifts under pressure

• Intense energy consumption criticized: Bitcoin’s PoW seen as an ab-
surdity

• Technology and economy facing a critical juncture for sustainable trans-
formation

5 Evolution of JVM’s Vision in the Age of Contain-
ers and Clouds

5.1 From JVM as a Universal Platform to Containerization

• Original vision of JVM running on minimal OS overtaken by container
technologies

5.2 Rise of Docker and Similar Technologies

• Containers now the building blocks of modern software deployment

5.3 Cloud Computing as the New Paradigm

• Gigantic, modular cloud infrastructures resembling a “Lego set”

5.4 Containers Over JVM

• Shift from JVM-centric to container-centric (Docker, Kubernetes) ar-
chitectures
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5.5 The Irony of Scale

• JVM’s goal for universality now encapsulated within even larger cloud
ecosystems

6 An Analogy with Consumerism

6.1 Consumerism and Programming Mindset

• Just as responsible consumers question the environmental cost of prod-
ucts, programmers should consider the resource demands of their code

6.2 The Illusion of Unlimited Resources

• Some runtimes offer seemingly unlimited memory and threads

• Similar to consumerist illusions of endless resources

6.3 Environmental Consciousness in Programming

• Recognizing the environmental and computational costs of heavy re-
source usage
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6.4 Sustainable Programming Practices

• Choosing more efficient, resource-conscious programming approaches
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6.5 It is our choice:
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7 Modern Tech Stack Essentials: Cloud, Contain-
ers, Efficiency

7.1 Green Cloud Computing

• Emphasis on sustainable, environmentally-friendly cloud platforms

7.2 Containerization as the Backbone

• Adoption of container technologies (e.g., Docker) for flexible deploy-
ment

7.3 Efficiency in Runtime Environments

• Need for lightweight, resource-efficient runtimes within containers

• How does the JVM fits in that picture?

• Rust on the rise; C/C++ still very much in demand.

• Clojure - JVM = Common Lisp

8 Common Lisp Implementations Compiling to Ma-
chine Code

8.1 SBCL (Steel Bank Common Lisp)

• High-quality native compiler

• SBCL Official Site

8.2 CCL (Clozure Common Lisp)

• Compiler-only implementation, generates native code

• CCL Official Site

8.3 ECL (Embeddable Common Lisp)

• Compiles to C, capable of generating native code

• ECL Official Site
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8.4 CLASP

• Interoperates with C++, uses LLVM for JIT compilation to native
code

• CLASP GitHub Repository

8.5 CMUCL

• High-performance implementation from Carnegie Mellon University

• CMUCL Official Site

9 Commercial Common Lisp Environments

9.1 LispWorks

• An integrated cross-platform development tool for Common Lisp

• LispWorks Official Site

9.2 Allegro CL

• Provides the full ANSI Common Lisp standard with many extensions

• Allegro CL Official Site

9.3 MOCL

• Common Lisp as a library for mobile devices and OSX

• MOCL Official Site

10 Common Lisp vs. Clojure: Efficiency in CPU
and Memory

10.1 Compiled Code Performance

• CL implementations compile to machine code, often more CPU effi-
cient.

• Especially true for numeric and CPU-intensive tasks.
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10.2 Memory Footprint

• CL generally has a smaller memory footprint compared to JVM (Clo-
jure).

• More control over memory management in CL.

10.3 Startup Time

• Faster startup times in CL compared to JVM.

10.4 Garbage Collection

• CL offers more tunable garbage collection strategies.

• JVM’s collector optimized for long-running processes but can introduce
latency.

10.5 Tail Call Optimization

• CL supports efficient tail recursion in some implementations.

• Clojure has recur, but JVM support varies.

10.6 Data Structure Efficiency

• CL’s mutable structures can be more memory-efficient.

• Clojure’s immutable structures might have higher overhead in some
cases.

10.7 Direct Hardware Access

• CL provides more efficient pathways for direct hardware access and C
interoperability.

11 Clojure vs Common Lisp code

11.1 Immutability?

(defun merge-hash-tables (ht &rest hts)
"From 1 or more HTS create a single one with TEST of HT."
(if hts
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(let ((rez (make-hash-table :test (hash-table-test ht))))
(mapc (lambda (next)

(maphash
(lambda (key value)

(setf (gethash key rez) value))
next))

(cons ht hts))
rez)

ht))
;; vs
(defun merge-hash-tables! (ht &rest hts)

"Merge all HTS into HT. Modifies HT in place."
(mapc (lambda (next)

(maphash (lambda (key value)
(setf (gethash key ht) value))

next))
hts)

ht)

11.2 Multiple dispatch - Clojure

;; data structures
(defrecord Circle [radius])
(defrecord Rectangle [width height])
(defrecord ConsoleContext [])
(defrecord GUIContext [])

;; multi-methods
(defmulti draw (fn [shape context] [(class shape) (class context)]))
(defmethod draw [Circle ConsoleContext] [circle console]

(println (str "Drawing a circle with radius "
(:radius circle) " on the console.")))

(defmethod draw [Circle GUIContext] [circle gui]
(println (str "Drawing a circle with radius "

(:radius circle) " on the GUI.")))
(defmethod draw [Rectangle ConsoleContext] [rectangle console]

(println (str "Drawing a rectangle with width "
(:width rectangle) " and height "
(:height rectangle) " on the console.")))

(defmethod draw [Rectangle GUIContext] [rectangle gui]
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(println (str "Drawing a rectangle with width "
(:width rectangle) " and height "
(:height rectangle) " on the GUI.")))

(let [circle (->Circle 5)
rectangle (->Rectangle 10 20)
console (->ConsoleContext)
gui (->GUIContext)]

(draw circle console)
(draw rectangle gui))

11.3 Multiple dispatch - Common Lisp

;; Define the classes
(defclass shape () ())
(defclass circle (shape)

((radius :accessor radius :initarg :radius :initform 0)))
(defclass rectangle (shape)

((width :accessor width :initarg :width :initform 0)
(height :accessor height :initarg :height :initform 0)))

;; Define contexts
(defclass console-context () ())
(defclass gui-context () ())
;; Define the generic function
(defgeneric draw (shape context))
;; Methods for drawing a circle
(defmethod draw ((s circle) (c console-context))

(format t "Drawing a circle with radius ~A on the console.~%" (radius s)))
(defmethod draw ((s circle) (c gui-context))

(format t "Drawing a circle with radius ~A on the GUI.~%" (radius s)))
;; Methods for drawing a rectangle
(defmethod draw ((s rectangle) (c console-context))

(format t "Drawing a rectangle with width ~A and height ~A on the console.~%" (width s) (height s)))
(defmethod draw ((s rectangle) (c gui-context))

(format t "Drawing a rectangle with width ~A and height ~A on the GUI.~%" (width s) (height s)))
;; Usage
(let ((c (make-instance ’circle :radius 5))

(r (make-instance ’rectangle :width 10 :height 20))
(console (make-instance ’console-context))
(gui (make-instance ’gui-context)))

(draw c console)
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(draw r gui))

11.4 XTDB - Clojure

(let [node (xt.client/start-client "http://localhost:3000")]
(dotimes [i 99999]

(let [[xt-id user-id name] (repeatedly #(random-uuid))
tx-key (xt/submit-tx node [[:put :clojure

{:xt/id xt-id
:user-id user-id
:name name}]])

res (xt/q node
{:find [’x]
:where [(list ’$ :clojure {:xt/* ’x :xt/id xt-id})]}

{:basis {:tx tx-key}
:default-all-valid-time? false})]

(assert (= 1 (count res)))
(assert (= xt-id (-> (first res) :x :xt/id))))

(Thread/sleep 5)
(when (zero? (mod (inc i) 10))

(println "--> count=" (inc i)))))

11.5 XTDB - Common Lisp

(let ((node (make-xtdb-http-client "http://localhost:3000")))
(format t "-->url: ~a table: ~a ~%" url table)
(loop

for count from 1 upto 100000
do (let* ((xt/id (uuid:make-v4-uuid))

(tx-key (submit-tx
node
(vect (vect :|put| table

(dict :|xt/id| xt/id
:|user-id| (uuid:make-v4-uuid)
:|text| "yeayayaya")))))

(rc (query node
(dict
:|find| (vect ’x)
:|where| (vect (xtdb/list

’$
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table (dict :|xt/*| ’x
:|xt/id| xt/id))))

:basis (dict :|tx| tx-key)
:default-all-valid-time? nil)))

(assert (and (= 1 (length rc))
(uuid:uuid= xt/id (href (car rc) :|x| :|xt/id|))))

(sleep 0.005)
(when (= 0 (mod count 10))

(format t "--> count=~a~%" count)))))
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