
Embracing Common Lisp in the Modern World

[Jan Sulmont]

January 17, 2024

1 Introduction: Clojure, Common Lisp, and the
JVM Saga

1.1 The Clojure Equation

• Spoiler alert: Clojure = Subset of Common Lisp + JVM

1.2 A Glimpse into JVM’s Legacy

• Exploring the evolution and influence of the Java Virtual Machine

1.3 Common Lisp Unveiled

• Understanding Clojure’s roots in Common Lisp’s subset

1.4 The Timeless Legacy of Common Lisp

• A language enduring for over 40 years, set to continue for many more

1.5 My Personal Perspective

• Remember: All opinions and rantings here are solely mine

2 Tech Giants vs Microsoft in the Late ’90s

2.1 Background

• Era of rapid Internet and software development

• Microsoft dominant in the software industry

1

2.2 The Alliance: Oracle, Sun Microsystems, IBM

• Formed to challenge Microsoft’s growing influence

2.3 The Strategy

• Promoting Java and the JVM

• Aimed to counter Microsoft’s .NET framework

2.4 Key Points

• JVM’s “Write Once, Run Anywhere” philosophy as a competitive edge

• Collaboration to enhance JVM’s capabilities and adoption

• Positioning Java as a versatile, cross-platform solution

2.5 Positive Impact

• Intensified competition in software and web development

• Encouraged open standards and cross-platform compatibility

• Laid groundwork for future enterprise solutions and cloud computing

3 The Grand Vision of JVM

3.1 Universal Platform Ambition

• Envisioned to replace traditional operating systems

• “Write Once, Run Anywhere” extends to entire system operations

3.2 Handling Massive Multitasking

• Designed to efficiently manage tens of thousands of threads. . .

• Promising unparalleled concurrency and performance

3.3 JVM as the Core of Computing

• Every application, service running within the JVM ecosystem

• Seamless, integrated computing environment

2

3.4 Revolutionizing System Architecture

• Moving beyond hardware and OS limitations

• Uniform experience across all devices and platforms

3.5 The Utopian Tech Future

• A world where JVM unifies and simplifies computing

• Emphasizing portability, efficiency, and scalability

• An army of Java developers

3.6 1994 Sun Micro System 32 bits

3.7 Whoop-de-doo!

4 Economic Landscape: Late ’90s vs 2023

4.1 Late ’90s

• Global capitalistic expansion

• Technology and dot-com boom, marked by speculative investments

• Assumption of infinite natural resources: environmental concerns over-
looked

3

• High consumerism and stock market growth: focus on short-term gains

• Set the stage for nowadays challenges

4.2 2023: Escalating Concerns and Shifts in Global Perspec-
tive

• Civil unrest fueled by energy insecurities and geopolitical tensions

• Acute realization of finite resources: global policy shifts under pressure

• Intense energy consumption criticized: Bitcoin’s PoW seen as an ab-
surdity

• Technology and economy facing a critical juncture for sustainable trans-
formation

5 Evolution of JVM’s Vision in the Age of Contain-
ers and Clouds

5.1 From JVM as a Universal Platform to Containerization

• Original vision of JVM running on minimal OS overtaken by container
technologies

5.2 Rise of Docker and Similar Technologies

• Containers now the building blocks of modern software deployment

5.3 Cloud Computing as the New Paradigm

• Gigantic, modular cloud infrastructures resembling a “Lego set”

5.4 Containers Over JVM

• Shift from JVM-centric to container-centric (Docker, Kubernetes) ar-
chitectures

4

5.5 The Irony of Scale

• JVM’s goal for universality now encapsulated within even larger cloud
ecosystems

6 An Analogy with Consumerism

6.1 Consumerism and Programming Mindset

• Just as responsible consumers question the environmental cost of prod-
ucts, programmers should consider the resource demands of their code

6.2 The Illusion of Unlimited Resources

• Some runtimes offer seemingly unlimited memory and threads

• Similar to consumerist illusions of endless resources

6.3 Environmental Consciousness in Programming

• Recognizing the environmental and computational costs of heavy re-
source usage

5

6.4 Sustainable Programming Practices

• Choosing more efficient, resource-conscious programming approaches

6

6.5 It is our choice:

7

7 Modern Tech Stack Essentials: Cloud, Contain-
ers, Efficiency

7.1 Green Cloud Computing

• Emphasis on sustainable, environmentally-friendly cloud platforms

7.2 Containerization as the Backbone

• Adoption of container technologies (e.g., Docker) for flexible deploy-
ment

7.3 Efficiency in Runtime Environments

• Need for lightweight, resource-efficient runtimes within containers

• How does the JVM fits in that picture?

• Rust on the rise; C/C++ still very much in demand.

• Clojure - JVM = Common Lisp

8 Common Lisp Implementations Compiling to Ma-
chine Code

8.1 SBCL (Steel Bank Common Lisp)

• High-quality native compiler

• SBCL Official Site

8.2 CCL (Clozure Common Lisp)

• Compiler-only implementation, generates native code

• CCL Official Site

8.3 ECL (Embeddable Common Lisp)

• Compiles to C, capable of generating native code

• ECL Official Site

8

http://www.sbcl.org/
https://ccl.clozure.com/
https://common-lisp.net/project/ecl/

8.4 CLASP

• Interoperates with C++, uses LLVM for JIT compilation to native
code

• CLASP GitHub Repository

8.5 CMUCL

• High-performance implementation from Carnegie Mellon University

• CMUCL Official Site

9 Commercial Common Lisp Environments

9.1 LispWorks

• An integrated cross-platform development tool for Common Lisp

• LispWorks Official Site

9.2 Allegro CL

• Provides the full ANSI Common Lisp standard with many extensions

• Allegro CL Official Site

9.3 MOCL

• Common Lisp as a library for mobile devices and OSX

• MOCL Official Site

10 Common Lisp vs. Clojure: Efficiency in CPU
and Memory

10.1 Compiled Code Performance

• CL implementations compile to machine code, often more CPU effi-
cient.

• Especially true for numeric and CPU-intensive tasks.

9

https://github.com/clasp-developers/clasp
https://www.cons.org/cmucl/
http://www.lispworks.com/
http://www.franz.com/products/allegrocl/
http://wukix.com/mocl

10.2 Memory Footprint

• CL generally has a smaller memory footprint compared to JVM (Clo-
jure).

• More control over memory management in CL.

10.3 Startup Time

• Faster startup times in CL compared to JVM.

10.4 Garbage Collection

• CL offers more tunable garbage collection strategies.

• JVM’s collector optimized for long-running processes but can introduce
latency.

10.5 Tail Call Optimization

• CL supports efficient tail recursion in some implementations.

• Clojure has recur, but JVM support varies.

10.6 Data Structure Efficiency

• CL’s mutable structures can be more memory-efficient.

• Clojure’s immutable structures might have higher overhead in some
cases.

10.7 Direct Hardware Access

• CL provides more efficient pathways for direct hardware access and C
interoperability.

11 Clojure vs Common Lisp code

11.1 Immutability?

(defun merge-hash-tables (ht &rest hts)
"From 1 or more HTS create a single one with TEST of HT."
(if hts

10

(let ((rez (make-hash-table :test (hash-table-test ht))))
(mapc (lambda (next)

(maphash
(lambda (key value)

(setf (gethash key rez) value))
next))

(cons ht hts))
rez)

ht))
;; vs
(defun merge-hash-tables! (ht &rest hts)

"Merge all HTS into HT. Modifies HT in place."
(mapc (lambda (next)

(maphash (lambda (key value)
(setf (gethash key ht) value))

next))
hts)

ht)

11.2 Multiple dispatch - Clojure

;; data structures
(defrecord Circle [radius])
(defrecord Rectangle [width height])
(defrecord ConsoleContext [])
(defrecord GUIContext [])

;; multi-methods
(defmulti draw (fn [shape context] [(class shape) (class context)]))
(defmethod draw [Circle ConsoleContext] [circle console]

(println (str "Drawing a circle with radius "
(:radius circle) " on the console.")))

(defmethod draw [Circle GUIContext] [circle gui]
(println (str "Drawing a circle with radius "

(:radius circle) " on the GUI.")))
(defmethod draw [Rectangle ConsoleContext] [rectangle console]

(println (str "Drawing a rectangle with width "
(:width rectangle) " and height "
(:height rectangle) " on the console.")))

(defmethod draw [Rectangle GUIContext] [rectangle gui]

11

(println (str "Drawing a rectangle with width "
(:width rectangle) " and height "
(:height rectangle) " on the GUI.")))

(let [circle (->Circle 5)
rectangle (->Rectangle 10 20)
console (->ConsoleContext)
gui (->GUIContext)]

(draw circle console)
(draw rectangle gui))

11.3 Multiple dispatch - Common Lisp

;; Define the classes
(defclass shape () ())
(defclass circle (shape)

((radius :accessor radius :initarg :radius :initform 0)))
(defclass rectangle (shape)

((width :accessor width :initarg :width :initform 0)
(height :accessor height :initarg :height :initform 0)))

;; Define contexts
(defclass console-context () ())
(defclass gui-context () ())
;; Define the generic function
(defgeneric draw (shape context))
;; Methods for drawing a circle
(defmethod draw ((s circle) (c console-context))

(format t "Drawing a circle with radius ~A on the console.~%" (radius s)))
(defmethod draw ((s circle) (c gui-context))

(format t "Drawing a circle with radius ~A on the GUI.~%" (radius s)))
;; Methods for drawing a rectangle
(defmethod draw ((s rectangle) (c console-context))

(format t "Drawing a rectangle with width ~A and height ~A on the console.~%" (width s) (height s)))
(defmethod draw ((s rectangle) (c gui-context))

(format t "Drawing a rectangle with width ~A and height ~A on the GUI.~%" (width s) (height s)))
;; Usage
(let ((c (make-instance ’circle :radius 5))

(r (make-instance ’rectangle :width 10 :height 20))
(console (make-instance ’console-context))
(gui (make-instance ’gui-context)))

(draw c console)

12

(draw r gui))

11.4 XTDB - Clojure

(let [node (xt.client/start-client "http://localhost:3000")]
(dotimes [i 99999]

(let [[xt-id user-id name] (repeatedly #(random-uuid))
tx-key (xt/submit-tx node [[:put :clojure

{:xt/id xt-id
:user-id user-id
:name name}]])

res (xt/q node
{:find [’x]
:where [(list ’$:clojure {:xt/* ’x :xt/id xt-id})]}

{:basis {:tx tx-key}
:default-all-valid-time? false})]

(assert (= 1 (count res)))
(assert (= xt-id (-> (first res) :x :xt/id))))

(Thread/sleep 5)
(when (zero? (mod (inc i) 10))

(println "--> count=" (inc i)))))

11.5 XTDB - Common Lisp

(let ((node (make-xtdb-http-client "http://localhost:3000")))
(format t "-->url: ~a table: ~a ~%" url table)
(loop

for count from 1 upto 100000
do (let* ((xt/id (uuid:make-v4-uuid))

(tx-key (submit-tx
node
(vect (vect :|put| table

(dict :|xt/id| xt/id
:|user-id| (uuid:make-v4-uuid)
:|text| "yeayayaya")))))

(rc (query node
(dict
:|find| (vect ’x)
:|where| (vect (xtdb/list

’$

13

table (dict :|xt/*| ’x
:|xt/id| xt/id))))

:basis (dict :|tx| tx-key)
:default-all-valid-time? nil)))

(assert (and (= 1 (length rc))
(uuid:uuid= xt/id (href (car rc) :|x| :|xt/id|))))

(sleep 0.005)
(when (= 0 (mod count 10))

(format t "--> count=~a~%" count)))))

14

	Introduction: Clojure, Common Lisp, and the JVM Saga
	The Clojure Equation
	A Glimpse into JVM's Legacy
	Common Lisp Unveiled
	The Timeless Legacy of Common Lisp
	My Personal Perspective

	Tech Giants vs Microsoft in the Late '90s
	Background
	The Alliance: Oracle, Sun Microsystems, IBM
	The Strategy
	Key Points
	Positive Impact

	The Grand Vision of JVM
	Universal Platform Ambition
	Handling Massive Multitasking
	JVM as the Core of Computing
	Revolutionizing System Architecture
	The Utopian Tech Future
	1994 Sun Micro System 32 bits
	Whoop-de-doo!

	Economic Landscape: Late '90s vs 2023
	Late '90s
	2023: Escalating Concerns and Shifts in Global Perspective

	Evolution of JVM's Vision in the Age of Containers and Clouds
	From JVM as a Universal Platform to Containerization
	Rise of Docker and Similar Technologies
	Cloud Computing as the New Paradigm
	Containers Over JVM
	The Irony of Scale

	An Analogy with Consumerism
	Consumerism and Programming Mindset
	The Illusion of Unlimited Resources
	Environmental Consciousness in Programming
	Sustainable Programming Practices
	It is our choice:

	Modern Tech Stack Essentials: Cloud, Containers, Efficiency
	Green Cloud Computing
	Containerization as the Backbone
	Efficiency in Runtime Environments

	Common Lisp Implementations Compiling to Machine Code
	SBCL (Steel Bank Common Lisp)
	CCL (Clozure Common Lisp)
	ECL (Embeddable Common Lisp)
	CLASP
	CMUCL

	Commercial Common Lisp Environments
	LispWorks
	Allegro CL
	MOCL

	Common Lisp vs. Clojure: Efficiency in CPU and Memory
	Compiled Code Performance
	Memory Footprint
	Startup Time
	Garbage Collection
	Tail Call Optimization
	Data Structure Efficiency
	Direct Hardware Access

	Clojure vs Common Lisp code
	Immutability?
	Multiple dispatch - Clojure
	Multiple dispatch - Common Lisp
	XTDB - Clojure
	XTDB - Common Lisp

