Columnar Data in 2024:
The Future of Efficient Data Analytics

Jeremy Taylor, Head of Product
jdt@juxt.pro
@refset

JUXT

a glacier with ancient frozen c
N 1 |

olumns of binary data visible within

About Me

Ex-IBM
Head of Product, xtdb.com
@refset

JUXT

Hosted by Nubank

"id"
RowID
100,000 "bob"

100,001 "tom"

100,002 "fin"

Clojure C

"Bob"

"State of XTDB" by Jon Pither

“‘ ClojureTV A Subscribed

28.2K subscribers

1.3K views 6 months ago DURHAM

ageMeta

{
“colName™: “age”,

1 »~p Share

=4 Save

gQV-XrkJj20

https://www.youtube.com/watch?v

https://www.youtube.com/watch?v=gQV-XrkJj2o

le+09

le+08

le+07

le+06

100000

10000

1000

100

@
=
~
0
4
@
%]
y =
a

10

1

0.1

1955 1960 1965 1970 1975 1980 1955 1990 1995 2000 2005 2010

> Pl < 4:0‘!/6:03

Historical Cost of Computer Memory and Storage

Yy S —_—

T

1983 IBM DBZ released

g ————y

*+

:

1970: Relational Model dlscovere
- 1979: Oracle released (inc. SQL)

8 PUE Wn||eddN 1
q pa323||0> ejeq]

Big
Floppy
Small

2

aﬁemnsnauqomq:

\‘\,,

' Fllp Flops

Core

ICs on boards

SIMMs
DIMMs
drives
drives
drives

Flash sticks / cards

SSDs

"UPDATE Considered Harmful" by Jeremy Taylor

JxMz-tyicgo

https://www.youtube.com/watch?v

https://www.youtube.com/watch?v=JxMz-tyicgo

only insert here
i

>

system time

append-only timeline

insert anywhere

. /N
valid time 0
»

mutable timeline

Today's Topics

1. Columnar data 101
2. Context & trends

3. Modern analytic systems
4. R&D

JUXT

RELATIONAL MODEL

A relation is an unordered set that Artist(name, year, country)

contain the relationship of attributes name year country

that represent entities. Wu-Tang Clan 1992 |USA
Notorious BIG 1992 USA

A tuple is a set of attribute values (also [¢%A 1990 |USA

known as its domain) in the relation.
— Values are (normally) atomic/scalar.

— The special value NULL is a member of ‘
every domain (if allowed). Table with n columns

n-ary Relation

https://www.youtube.com/watch?v=uikbtpVZS2s

https://www.youtube.com/watch?v=uikbtpVZS2s

Logical table
representation

b1

b2
b3
b4
b5

GIR|B[(R([2

EEIEARE

Row layout

ail

bt |cl |a2 | b2|c2

Column layout

al

a2 | a3 | a4 | a5 | bl

v

b2 | b3 | b4 | b5 | el

|

c2 | c3|ca|c5

l encoding

encoded chunk

encoded chunk

encoded chunk

Row 1
Row 2
Row 3
Row 4

Row-oriented Memory Buffer

Row 1

Row 2

Row 3

Row 4

session_id

1331246660
1331246351
1331244570

1331261196

1331246
3/8/2012 2:44PM
99.155:155.225

65.87.165.114
1331244570

3/8/2012 2:09PM

71.10.1046.181
1331261194

3/8/2012 6:46PM

76.102.156.138

timestamp

3/8/2012 2:44PM

session_id

timestamp

source_ip

SOUrce ip
99.155.155.225
65.87.165.114
71.10.106.181

76.102.156.138

Column-oriented Memaory Buffer

/8/2012 2:38PM
2 2:09PM

99.155.155.225
65.87.165.114

71.10.106.181

76.102.156.138

10

The idea behind column-oriented storage is simple: don’t store all
the values from one row together, but store all the values from each
column together instead.

If each column is stored in a separate file, a query only needs

to read and parse those columns that are used in that query,
which can save a lot of work.

11

Columnar data storage example

» Suppose we have a 1TB table with 100 columns.
« We have a query that requires 5 columns of the table.

o Row-store:
Read entire 1TB of data from disk at 100MB/s =~ 3 hours

o Columnar storage:
Read 5 columns (50GB) from disk = 8 minutes

https://www.youtube.com/watch?v=cBWITLTMwfQ

12

https://www.youtube.com/watch?v=cBWlTLTMwfQ

Compression

» We have a query that requires 5 columns of the table.

o No compression:
Read 5 columns (50GB) from disk = 8 minutes

o Compression:
Read 5 compressed columns (5x -> 10GB) from disk = 1:40 minutes

https://www.youtube.com/watch?v=cBWITLTMwfQ

13

https://www.youtube.com/watch?v=cBWlTLTMwfQ

%y Parquet

1) Columnar layout
2) On-disk compression (e.g. Run-Length Encoding)
3) ~Ildeal cold storage

14

Parquet: data organization

. Data organization
o Row-groups (default 128MB)
o Column chunks

o Pages (default 1MB) —
m Metadata | Cotumn Achunk
e Min (Colurn B churk 0
e Max :
e Count e
m Rep/deflevels [coumzaumoo

m [Encodedvalues

Row group N

Footer (file, row group and column metadata)

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

| Column x chunk n

Page metadata

Definition levels

Page 0
[
[Repetition levels
[
[Encoded values

e—— A — e)

Page 1

Page 2

Page M

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

Optimization: predicate pushdown

SELECT * FROM table WHERE x > 5

Row—-group 0: x: [min: 0, max: 9]
Bow—group 1l: x: [min:s 3, max: 7]

Row—-group 2: %x: [min: 1, max: 4]

» Leverage min/max statistics

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

KCIHQEROW>>>

Apache Arrow Overview

Apache Arrow is a software development platform for building high performance applications that process and transport
large data sets. It is designed to both improve the performance of analytical algorithms and the efficiency of moving data
from one system or programming language to another.

A critical component of Apache Arrow is its in-memory columnar format, a standardized, language-agnostic specification
for representing structured, table-like datasets in-memory. This data format has a rich data type system (included nested
and user-defined data types) designed to support the needs of analytic database systems, data frame libraries, and more.

session_id timestamp source_ip

Row1 [BEEEPELLEN] 3/8/2012 2:44PM 99.155.155.225
LUV 1331246351 3/8/2012 2:38PM 65.87.165.114
Row3 [EEEEPEELY 3/8/2012 2:09PM 71.10.106.181

.
' O I u m n a r I S F a St LETE N 1331261196 3/8/2012 6:46PM 76.102.156.138

Traditional Memory Buffer Arrow Memory Buffer SELECT * FROM clickstream
WHERE session_id = 1331246351

The Apache Arrow format allows computational routines

1331246660 1331246660

and execution engines to maximize their efficiency when Rows IR sesson 11
99.155.155.225 1331244570
1331246351 1331261196

LT3 3/8/2012 2:38PM 3/8/2012 2:44PM

3/8/2012 2:38PM

m

Intel CPU

scanning and iterating large chunks of data. In particular,

65.87.165.114

the contiguous columnar layout enables vectorization e

timestamp

3/8/2012 2:09PM

LCIN 3/8/2012 2:09PM

using the latest SIMD (Single Instruction, Multiple Data) 7110108181

3/8/2012 6:46PM
99.155.155.225
65.87.165.114

1331261196

operations included in modern processors. PO o 2012 cason el

76.102.156.138 76.102.156.138

17

Context & Trends

HUMMEL KG. MAGSTADT

FEGL GeBalellsrsy

| - — - (=

Nummer
&

“Aussage

Kennung

23 45

0joooo
1
"1

s

2221

©
Q01313333

414444
35353
616666

~J

111

{8 68 8

HEERE

117 3 &%

0
1

2

4
5
b

1

ODOGUU 0.0 0 ooco0O0O0O0OOOOOOOO0O0O0O0O0O0O0CO000000000000000000000000

18§10 13 1415 1517 1819 20 71 22 23 24 25 25 21 28 29 3 303132 33 34 35 36 37 3b 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 63 70 Fi 12

11_11.lll111111111111lltll1111111]1]]1111111]1]1!1ll!lll]fllllllll
2122222 2222222022202 82222222320 0020002300220 0292202 000220002000

333333 3 3‘333

FORTRAN

5 55555555555565555555555555555555555556655555555555555555555555555

444424440444 444444444444 4444444444444444444444

66 66
PRI T I I M R IV R I N I TR VI R I I T I 1A T T T T
8583888 8.8/ 8.

939999999Q99999ﬂ999999999999999999999909 995999999?99 39388883833

8680066880833088388808888606838888888088888883888888°¢88|8

‘o
F8Eamnnn 141516"13 I!ﬂzlﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂnﬂﬁﬂﬂ!lﬂ“ﬂ‘zﬁﬂﬁ“ﬂn‘!ﬂlﬂSISBHSSO51!!%6.!]!2535{55!6575859:0 nmn

00000G00
347576 17 18 19 88
11118141
23122241
33343333
44444444
455558565
66656666
il iddd
8868888

993994898

7374 75 16 77 78 79 80

19

RMULRA
A SLn'TpR

Fortran

.

A ek e F S e

FOR THE IBM 704

https://www.youtube.com/watch?v=NMWzgy8FsKs

P P ¢ o021/23 «0 B % @ o]

FORTRAN in 100 Seconds

https://www.youtube.com/watch?v=NMWzgy8FsKs

FORTRAN

The Beginnings of FORTRAN (Complete)

“our primary objective was to permit people to concentrate on the essence of their
problems and eliminate preoccupation with the mechanics of the computer”

- Irv Ziller, The Beginnings of Fortran

https://www.youtube.com/watch?v=KohboWwrsXg

21

https://www.youtube.com/watch?v=KohboWwrsXg

Passing arrays between languages

Fortran stores array elements in ascending storage units in column-major order. C
stores array elements in row-major order. Fortran array indexes start at 1, while C
array indexes start at 0.

XL Fortran: Optimization and Programming Guide
https://www.ibm.com/docs/en/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/proguide.pdf

22

https://www.ibm.com/docs/en/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/proguide.pdf

HOT long vectorization
When you specify any of the following;:

* -04 and higher
¢ -ghot with -gnostrict

you enable -ghot=vector by default. Specifying -qnostrict with optimizations
other than -04 and -05 ensures that the compiler looks for long vectorization
opportunities. This can optimize loops in source code for operations on array data
by ensuring that operations run in parallel where applicable. The compiler uses
standard machine registers for these transformations and does not restrict vector

data size; supporting both single- and double-precision floating-point vectorization.

Often, HOT vectorization involves transformations of loop calculations into calls to
specialized mathematical routines supplied with the compiler such as the
Mathematical Acceleration Subsystem (MASS) libraries. These mathematical
routines use algorithms that calculate results more efficiently than executing the
original loop code.

23

Imperative

Explicit Instructions

The system is stupid,
you are smart

https://www.copebit.ch/en/how-declarative-and-imperative-styles-differ-in-infrastructure-as-code/

Declarative

Describe the OQutcome

The system is smart,
you don’t care

24

https://www.copebit.ch/en/how-declarative-and-imperative-styles-differ-in-infrastructure-as-code/

flickr

Imaae by robphoto on

Why do | talk about SQL?

SQL is the only ever successful,
mainstream, and general-
purpose 4GL (

And it is awesome!

2 o

How Modern SQL Databases Come up with Algorithms that You Would Have Never Dreamed Of by Lukas Eder

https://www.youtube.com/watch?v=wTPGW1PNy_Y

r
LJd

25

https://www.youtube.com/watch?v=wTPGW1PNy_Y

How many rows from operation .

Your estimate / dev environment is here

Big O Notation
100
90
80
70

60

- O 0N ™ 8 =T O
—————— N N M M M T

"M O NN 0 - e hﬁﬂoo‘ﬁf‘ﬂ-“fhg
o T T NN N DO O RN AR AN D 0000
-

103
106

—_—N —0(1) OflogN) ——OI(N)

O(N log N) O(N*2) ===—==0(27N) ==————0(NI)

Latency Mumbers Everg Programmer Should Know

Hins

™ L1 cache reference: B.5ns

Bir-anch mispredict: 5n=s

|] |

HE L2 cache reference: 7ns
|] |

|

EEEER
EEEENE
HEEEBE Hute: lockAunlock: 25 n=s

M 186 n=

https://gist.github.com/hellerbarde/2843375

M Hain memord reference: 188 ns

EEEEN_
TTT T R

EEEER)))
EEEEE Compress 1EE with Zippu) Zps

M Send LKE over 1Gbeps network: 18ps

353D random read C1GhsSs 35D
158 p=

EEEER
EENENEN round trip in sane
EENNEN datacenter: S8 ps
EEEEN
EEEEN
EEEENR
EEEEN

W ims

M Read 1ME sequentially
frrom 3500 1m=s

Disk seek! 1A mns

EEEEN

HENENEN Rzad 1HME sequeantially
HEEEEN from disk: 28ms
EEEEN

Facket
roundtrig

M CA to

M tetherlands:
158 M=

Source: httesiAgist. github. coms 28491832

28

https://gist.github.com/hellerbarde/2843375

https://gist.github.com/hellerbarde/2843375

Lets multiply all these durations by a billion:

Magnitudes:
Minute:
L1 cache reference GE585
Branch mispredict 5s
L2 cache reference 78
Mutex lock/unlock 25°s
Hour:
Main memory reference 100 s
Compress 1K bytes with Zippy 50 min
Day:

Send 2K bytes over 1 Gbps network 5 50hE

Week

SSD random read 1.7 days
Read 1 MB sequentially from memory 2.9 days
Round trip within same datacenter 5.8 days
Read 1 MB sequentially from SSD 11.6 days

Year
Disk seek 16.5 weeks
Read 1 MB sequentially from disk 7.8 months
The above 2 together 1 year
Decade
Send packet CA->Netherlands->CA 4.8 years

one heart beat (0.5 s)
Yawn

Long yawn

Making a coffee

Brushing your teeth
One episode of a TV show (including ad breaks)

From lunch to end of work day

A normal weekend

A long weekend

A medium vacation

waiting for almost 2 weeks for a delivery

A semester in university
Almost producing a new human being

Average time it takes to complete a bachelor's degree

29

https://gist.github.com/hellerbarde/2843375

The ebb and flow of relative bandwidth...

120
[2020 mmw 2023

800G

100

80 -

60 - Gen5S

Throughput, GB/sec

40 - DDR5-4800

DDR4-3200

20

PCle x16 Ethernet

https://blog.enfabrica.net/the-next-step-in-high-performance-distributed-computing-systems-4f98f13064ac

30

https://blog.enfabrica.net/the-next-step-in-high-performance-distributed-computing-systems-4f98f13064ac

The Three Dimensions of Big Data Management

* Data Gravity — costs of moving
 Data Residency — legal implications

 Data Latency — the hardest technical challenge

https://intellyx.com/2022/09/19/gravity-residency-and-latency-balancing-the-three-dimensions-of-big-data/

31

https://intellyx.com/2022/09/19/gravity-residency-and-latency-balancing-the-three-dimensions-of-big-data/

Mechanical Sympathy

 Mechanical sympathy is when you use a tool or system
with an understanding of how it operates best

- You don’t need to be a hardware engineer

- You do need to understand how the hardware works and
take that into consideration when you design software

https://dzone.com/articles/mechanical-sympathy

32

https://dzone.com/articles/mechanical-sympathy

Mechanical Sympathy

oly Like L_lj 4 m

View Presentation IE' Speed: 1y 125x 15x 2%

f

» 36:51/49:34

Download MP3 SLIDES 49:34

Summary

Martin Thompson ponders if there is a mechanical sympathy between
developers and computers, and how to balance elegant design with the
application of science in the development of modern software.

https://www.infoq.com/presentations/mechanical-sympathy/

All Storage is Tape

33

https://www.infoq.com/presentations/mechanical-sympathy/

Mechanical Sympathy

ofy Like L_|'3 4 m

View Presentation IE' Speed: 4y q5x 1.5x 2x

Memory Access Patterns Matter

v

Download MP3 SLIDES 49:34

Summary

Martin Thompson ponders if there is a mechanical sympathy between
developers and computers, and how to balance elegant design with the
application of science in the development of modern software.

v

https://www.infoq.com/presentations/mechanical-sympathy/

https://www.infoq.com/presentations/mechanical-sympathy/

Mechanical Sympathy in Software Design

* Keys to performance: minimize instructions, minimize data
— Do the most work in the fewest instructions
- Reduce the data being shunted around

* You achieve this by modeling the problem domain and
eliminating non-essential complexity.

https://dzone.com/articles/mechanical-sympathy

35

https://dzone.com/articles/mechanical-sympathy

Mechanical Sympathy in Main Memory

* Bandwidth has exploded while latencies are the ~same
* To hide latency CPUs use evermore complex layers of caches

 CPUs hide memory latency using 3 heuristics:
- Temporal: Recent data will likely be required again soon
- Spatial: Adjacent data is likely to be required next
- Striding: Memory access is likely to follow simple patterns

https://mechanical-sympathy.blogspot.com/2012/08/memory-access-patterns-are-important.html

36

https://mechanical-sympathy.blogspot.com/2012/08/memory-access-patterns-are-important.html

The RUM Conjecture

Read

Read Optimized
Storage Systems

Update Optimized
Storage Systems

Memory Optimized
Storage Systems

Update Memory

https://medium.com/@arpitbhayani/the-rum-conjecture-bce86c2517e3

37

https://medium.com/@arpitbhayani/the-rum-conjecture-bce86c2517e3

A single algorithm can only minimize two out of: Read / Update / Memory overheads

Read Optimized

indexes
B-Tree Trie

Skiplist

Cracking
Adaptive structures

Moma Sparse Ind,

LSM
Bloom filter
Differential BT Aﬁprnximat

structures MaSM Bitmap indexes

Write Optimized Space Optimized

https://stratos.seas.harvard.edu/files/stratos/files/rum.pdf

38

https://stratos.seas.harvard.edu/files/stratos/files/rum.pdf

https://dataintensive.net/

OREILL

Designing
Data-Intensive
Applications

THE BIG IDEAS BEHIND RELIABLE, SCALABLE,
AND MAINTAINABLE SYSTEMS

Martin Kleppmann

39

https://dataintensive.net/

O'REILLY"

Designing
Data-Intensive
Applications

..as opposed to “Compute-intensive”

Key qualities:

THE BIG IDEAS BEHIND RELIABLE, SCALABLE
AND MAINTAINABLE SYSTEMS

* Reliability (fault-tolerance)
Scalability (response to load)
* Maintainability (simplicity)

Martin Kleppmann
40

Table 3-1. Comparing characteristics of transaction processing versus analytic systems

Transaction processing systems (OLTP) Analytic systems (OLAP)
Main read pattern Small number of records per query, fetched by key ~ Aggregate over large number of records
Main write pattern Random-access, low-latency writes from user input ~ Bulk import (ETL) or event stream
Primarily used by End user/customer, via web application Internal analyst, for decision support
What data represents Latest state of data (current point in time) History of events that happened over time
Dataset size Gigabytes to terabytes Terabytes to petabytes

41

g % Warehouse % Truck

a Customer .

3 worker driver
E Ecommerce site Stock-keeping app Vehicle route planner
[

i
wvy
>
wv
& Sales Inventory Geo
—

o) DB DB DB

extract extract extract
E transform transform transform :
[,
4 load load
v
D_ 1
5 Business i query
(@) SHalEE % : Data warehouse

Figure 3-8. Simplified outline of ETL into a data warehouse.

“In a typical data warehouse, tables are often very wide: fact tables often have over 100 columns, sometimes several hundred”

42

fact_sales table

date_key | product_sk | store_sk | promotion_sk | customer_sk | quantity | net_price | discount_price
140102 69 4 NULL NULL 1 13.99 13.99
140102 69 5 19 NULL 3 14.99 9.99
140102 69 5 NULL 191 1 14.99 14.99
140102 74 3 23 202 5 0.99 0.89
140103 31 2 NULL NULL 1 2.49 249
140103 31 3 NULL NULL 3 14.99 999
140103 31 3 21 123 1 49.99 39.99
140103 31 8 NULL 233 1 0.99 0.99

date_key file contents:
product_sk file contents:
store_sk file contents:
promotion_sk file contents:
customer_sk file contents:
quantity file contents:
net_price file contents:
discount_price file contents:

Columnar storage layout:

140102, 140102, 140102, 140102, 140103, 140103, 140103, 140103
69, 69,69, 74, 31, 31, 31, 31
4,5,53,2,3,3,8

NULL, 19, NULL, 23, NULL, NULL, 21, NULL

NULL, NULL, 191, 202, NULL, NULL, 123, 233
1:3: 1: 5:1:3:1:1
13.99, 14.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99

13.99,9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Figure 3-10. Storing relational data by column, rather than by row.

“We can only reconstruct a row because we know that the kth item in one column belongs to the same row as the kth item in another column.”

43

Column values:

Run-length encoding:
product_sk=29: 9,1
product_sk=30: 10,2
product_sk=31: 5,4,3,3
product_sk=68: 15,1
product_sk=69: 0,4,12,2
product_sk=74: 4,1

product s 169]69] 6969 [74] 31/ 31| 31| 312830 [30[31 31 31 [ss] 9
Bitmap for each possible value:

productsk=2%: [0 00 [0[0 [0 [0] 0] 0] 1] /0] 0] 0] /0] 0] 0] 0][o]
product sk=30: 0] 0 0/[o[o[0flofofol[o][1][1][o]o]ol[o]o][o
productsk=31: (0700 [0][0 (1 |[1][7][7][o] o o][¥]¥] 7] 0] 0] o]
product sk=68: |0 0| 0 [0/ 0 /[0[o] o]0/ ofo]fo]ofo]o]1][o0]0
product sk=e9: [1]11(1[1][0][0][][0] 0 |[0][a][0][0] 0] 0] 0] 1 [1
productsk=74 [0 0 0 [0][1 [0 [0] 0] 0][a]a] 0] 0] (0] 0] 0] 0][o]

(9 zeros, 1 one, rest zeros)

(10 zeros, 2 ones, rest zeros)

(5 zeros, 4 ones, 3 zeros, 3 ones, rest zeros)
(15 zeros, 1 one, rest zeros)

(0 zeros, 4 ones, 12 zeros, 2 ones)

(4 zeros, 1 one, rest zeros)

Figure 3-11. Compressed, bitmap-indexed storage of a single column.

44

Scanning Performance o« Bandwidth

* CPU Caches < Memory < Disk < Network Clock Cycle
o 1 2 3 4 5 6 7 8 9
* Make efficient use of CPU cycles, [
|
keep the CPU fed! waiting NI
- Exploit pipelining with “tight loops” Instructions "\l S [l I [
(avoid bubbles and branch 11
mispredictions) S dml 1 1 1 D
- Use vectorized processing (use L1- 2 Jseeezoene (X X [T @ [X X X
cache-sized record batches and avoid g Ys=eezeeae (XX] @I X X
decompressing) g s aeedIEE] 1 1 X
- Hardware parallelism Single iy
instruction, multiple data (SIMD) Completed By
. Instructions D .
* ...avoid latency stalls! []

“Next time you are developing an important algorithm, try pondering that a cache-miss is a lost opportunity to have executed ~500 CPU instructions!”

- Martin Thompson
p 45

Vectorized query engines

« Two key differences from tuple-at-a-time engines
(Postgres etc.)

Column oriented processing — Write query processing
algorithms that operate on columns as long as possible in
the execution plan. Refrain from working on tuples till
late in the plan (e.g. during projecting result-set back to
the user)

Push batches of column vectors through the query plan tree
— Instead of passing around tuple from one operator to
another, pass column(s) containing a fixed number of
records

46

Vectorized query processing

Better cache locality and efficient utilization of CPU cache — we can
quickly loop through tightly packed values of a column and do the necessary
processing — predicate evaluation, arithmetic computations etc. Cache lines
are filled with related values (from the same column) as opposed to
heterogeneous values from multiple columns in a tuple where some columns
may not even be touched by the query

Better chance of native optimizations by the compiler — tight loop based
vectorized algorithms are good candidates of automatic optimization by
compilers

Leverage hardware acceleration — well aligned column data in densely packed
arrays 1s amenable to acceleration using SIMD instructions. Common
operations like FILTER, SUM, MIN, MAX can be accelerated by an order of
magnitude by exploiting data-level parallelism of SIMD instructions

Directly operate on compressed columnar data — columnar format allows us to
encode column values with lightweight compression algorithms (dictionary
encoding, RLE etc) which trade compression ratio for better query
performance

a7

Writing columns

Update-in-place approaches are not possible with compressed columns

If you want to insert a row in the middle of a table, you most likely have to rewrite
all the columns. As rows are identified by their position within a column, the
insertion has to update all columns consistently

Query engines often augment column files with LSM-trees
- All writes first go to an in-memory store

- When enough writes have accumulated, they are merged with the column files on disk
and written to new files in bulk

- Queries need to examine both the column data on disk and the recent writes in
memory, and combine the two

- The query optimizer hides this distinction from the user, such that inserts,
updates, and deletes are immediately reflected in subsequent queries

48

Sorting of columns

* You can choose the columns by which the table

should be sorted, given advance knowledge of common
qgueries

* e.g. 1f queries often target date ranges, such as
“last month”, sort by date key first, then the
query optimizer can scan only the rows from the

last month, which will be much faster than scanning
all rows

* A sorted column is likely to benefit heavily from
run-length encoding and other compression

49

The Rise of Cloud Data Warehouses

* A cloud data warehouse makes no trade-offs
from a traditional data warehouse, but
extends capabilities and runs on a fully
managed service 1in the cloud

« Cloud data warehousing offers instant
scalability to meet changing business
requirements and powerful data processing
to support complex analytical queries

https://cloud.google.com/learn/what-is-a-data-warehouse

50

https://cloud.google.com/learn/what-is-a-data-warehouse

BigQuery Architecture

BigQuery’s serverless architecture decouples storage and compute and allows them to scale independently on demand. This structure
offers both immense flexibility and cost controls for customers because they don’t need to keep their expensive compute resources up
and running all the time. This is very different from traditional node-based cloud data warehouse solutions or on-premise massively

parallel processing (MPP) systems. This approach also allows customers of any size to bring their data into the data warehouse and start
analyzing their data using Standard SQL without worrying about database operations and system engineering.

Replicated, Distributed

Storage

. (99.9999999999% durability)
Streaming

Ingest

Free Bulk
Loading

@

BigQuery
< =

Distributed Memory
Shuffle Tier

- >

Petabit Network

High-Available Cluster
Compute
(Dremel)

BigQuery Architecture

SQL:201M
Compliant

REST API

Web UI,
CLI

Client Libraries
In 7 languages

51

;‘ol& snowflake’ WHY SNOWFLAKE ~ THE DATA CLOUD SOLUTIONS ~ RESOURCES v COMPANY

1

B
a¥

Ta

IS EASIER IN THE
DATA CLOUD

Snowflake delivers ease of use, instant elasticity, and lower TCO.

b
.,
A

-.
]
-h

START FOR FREE WHY SNOWFLAKE?

Azure Explore v Products ~ Solutions v Pricing v Partners v Resources v Learn Support

Azure Synapse Analytics

Accelerate time to insight across enterprise data warehouses and big data systems.

Try Azure Synapse Analytics free

Create a pay-as-you-go account

Overview Features Security Pricing Getstarted Customer stories Resources FAQ

Azure Synapse Analytics is an enterprise analytics service that accelerates time to insight across data

Experience a new class of data analytics

brings together the best of SQL technologies used in enterprise data warehousing, Apache Spark tec

Data Explorer for log and time series analytics.

“HTAP” (Hybrid Transactional/Analytical Processing) — one system to rule them all?

Operational
Databases Data Warechouses Data Lakes
—— N !
~ M;“iSQCOV\JS ~ SQCQ,\AS ~ min Ute,S Lo\‘te.ncy

(Query Co-qple)n‘ty)

Typical latencies of different database systems

https://medium.com/google-cloud/alloydb-new-kid-on-the-htap-block-188a732fdd35

54

https://medium.com/google-cloud/alloydb-new-kid-on-the-htap-block-188a732fdd35

Learn / Azure / Azure Cosmos DB / ® 7

Azure Synapse Link for Azure Cosmos
DB: Near real-time analytics use cases

Article « 10/12/2022 « 7 contributors &) Feedback

In this article

Supply chain analytics, forecasting & reporting
Real-time personalization

|OT predictive maintenance

Sample scenario: HTAP for Azure Cosmos DB

Next steps

APPLIESTO: @ NosQL @ MongoDB @ Gremlin

Azure Synapse Link for Azure Cosmos DB is a cloud native hybrid transactional and analytical
processing (HTAP) capability that enables you to run near real-time analytics over operational data.

Synapse Link creates a tight seamless integration between Azure Cosmos DB and Azure Synapse

You might be curious to understand what industry use cases can leverage this cloud native HTAP
capability for near real-time analytics over operational data. Here are three common use cases for
Azure Synapse Link for Azure Cosmos DB:

55

GO gle Cloud Overview Solutions

AlloyDB for PostgreSQL

AlloyDB for PostgreSQL

Benefits
Key features
Customers

What's new
Documentation
Compare features
All features
Pricing
Partners

Take the next step

Products Pricing Resources Q Docs Support

Announcing AlloyDB Al for building generative Al applications with PostgreSQL. Read the blog.

AlloyDB for PostgreSQL

A fully managed PostgreSQL-compatible database service for your most
demanding enterprise workloads. AlloyDB combines the best of Google
with PostgreSQL, for superior performance, scale, and availability.

Go to console Documentation

v/ Fully compatible with PostgreSQL, providing flexibility and true
portability for your workloads

v/ Superior performance, 4x faster than standard PostgreSQL for
transactional workloads*

v Fast, real-time insights, up to 100x faster analytical queries than
standard PostgreSQL*

v AlloyDB Al can help you build a wide range of generative Al
applications

56

awsﬁ Q Search in this guide Contact Us English

> 1 D> > User Guide for Aurora

¥ Working with zero-ETL

. : To create a zero-ETL integration, you specify an Aurora DB cluster as the source, and an Amazon
integrations

Redshift data warehouse as the target. The integration replicates data from the source database into

Getting started with zero- the target data warehouse.
ETL integrations

Creating zero-ETL The following diagram illustrates this functionality:

integrations

Adding and querying data
AWS Cloud
Viewing and monitoring

zero-ETL integrations

Amazon
Deleting zero-ETL MME\
integrations — "\\)
i “L"ri’.‘i" | A Iyti
Troubleshooting zero-ETL A q”ug;‘? 8
integrations \ \
Application / Datd
P Using Aurora Serverless v2 PR et (Amazon ") / ﬂ@ / andlysia
Redshift data
i Zero-ETL
» Using Aurora Serverless v1 mt:;atmns warehouses —
. Source DB
» Using the Data API clusters
» Using the query editor
» Code examples
Best practices with Aurora The integration monitors the health of the data pipeline and recovers from issues when possible. You
Performing an Aurora proof of can create integrations from multiple Aurora DB clusters into a single Amazon Redshift namespace,
concept enabling you to derive insights across multiple applications.
P Security

For information about pricing for zero-ETL integrations, see Amazon Aurora pricing[Z and Amazon

Quotas and constraints Redshift pricing[&.

>:o:g snowflake’ WHY SNOWFLAKE »~ THEDATACLOUD “ SOLUTIONS » RESOURCES » COMPANY v @ v START FOR FREE

USE DATABASE UNISTORE_139;
USE WAREHOUSE WH_UNISTORE_139;
USE SCHEMA UNISTORE_STREAMLIT_ORDERING_APP;

WRRKLARDS /* Orders Data Model */
CREATE OR REPLACE HYBRID TABLE Orders (
Orderkey number(33,0) PRIMARY KEY AUTOINCREMENT,
N WF LAKE U N IST RE Itemkey number(38,0) FOREIGN KEY REFERENCES Menuitem(Itemkey
Orderstatus varchar(20),
erdate timestamp_ntz DEFAULT current_timestamp::timesta

ername varchar(50),
index_o_orderdate(Orderdate)

Simplify development by uniting transactional and analytical data.

58

solutions REesoUrces company Docs pook @ Demo

tipBisolates oLap and oLTP upplicut‘lons. inimizing the effect of OLAP O OLTP.

pecause TiFlash i dep\oyed 'mdeper\dent\y from TiKV, it's poss'\b\e to isolate hardware resources: TiDB uses \abels 10
manage different types of storag® nodes.

TiFlash no3e 1

store 2

et

|solation of OLAP and OLTP opp\‘\ccxtions

0 S'nQIeStore Product v Solutions v

Transacti
Analytics

SQL + NoSQL
Real-time Al
All in one.

Transact, analyze and
contextualize your datg
in real time.

Docs v

company

~na

Resources v Pricing

SingleStoreDB empowers the world’s makers to build, deploy and
scale modern, intelligent applications — leading to real-time
decisions, lasting customer experiences.

SingleStoreDB is a distributed SQL database that offers high-
throughput transactions (inserts and upserts), low-latency analytics
and context from real-time vector data.

giving you flexibility to deploy wherever YOu need: self-managed on-
premises, or as a fully managed cloud service.

60

The Lamda Architecture for “real time” analytics

Application-level Queries Columnar data
IS good for

__batch

See also:

https://www.slideshare.net/nathanmarz/elephantdb

61

https://www.slideshare.net/nathanmarz/elephantdb

N Materialize Docs Product v Pricing Blog About v Signin GET STARTED >

The Operational Data Warehouse for Better
Business Outcor

Compute

Materialize is a cloud data warehouse with streaming internals,
built for work that needs action on what’s happening right now.

GET A DEMO > GET STARTED

P o) 1:57/319 B & Youlube .3

R&D

KRcecxdGxvQ

https://www.youtube.com/watch?v

The Future of the Hadoop Stack

« HDFS at the bottom
" But it has bad performance problems
, Which will assuredly get fixed....
« SQL at the top
With a data warehouse-style executor
Available from Impala, Vertica, ...

» Data warehouse market and the Hadoop market will
merge!!!

« Latest marketing speak from Hadoop vendors: data
lakes (stay tuned)

B Database Group
g T Gampeter S ot g lad 18

P Pl o) 21:23/5552 - The future of Hadoop >

Michael Stonebraker | Big Data is (at least) Four Different Problems

Michigan Engineering . A _
Subscribe 380 ~> Share ¥ Download X Cli =4 Save
@ 44.6K subscribers lﬁ gl] - & &

25K views 6 years ago
Big Data is (at least) Four Different Problems
Michael Stonebraker, Co-Director, Intel Science & Technology Center, MIT

64

https://www.youtube.com/watch?v=KRcecxdGxvQ

Foundations and Trends® in Databases
Vol. 5, No. 3 (2012) 197-280

© 2013 D. Abadi, P. Boncz, S. Harizopoulos, n.w

S. Idreos and S. Madden
DOI: 10.1561 /1900000024 the essence of knowledge

The Design and Implementation of Modern
Column-Oriented Database Systems

Daniel Abadi Peter Boncz Stavros Harizopoulos
Yale University CWI Amiato, Inc.
dna@cs.yale.edu P.Boncz@cwi.nl stavros@amiato.com

Stratos Idreos Samuel Madden
Harvard University MIT CSAIL
stratos@seas.harvard.edu madden@csail.mit.edu

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf

Cornell University

a I'\ iV > cs > cs.DB

Databases
Authors and titles for cs.DB in Aug 2023

[total of 86 entries: 1-25 | 26-50 | 51-75 | 76-86]
[showing 25 entries per page: fewer | more | all]

[25] arXiv:2308.08702 [pdf, other]

Finding a Second Wind: Speeding Up Graph Traversal Queries in RDBMSs Using Column-Oriented Processing

Mikhail Firsov, Michael Polyntsov, Kirill Smirnov, George Chernishev
Subjects: Databases (cs.DB); Performance (cs.PF)

[9] arXiv:2309.06051 [pdf, other]

OmniSketch: Efficient Multi-Dimensional High-Velocity Stream Analytics with Arbitrary Predicates
Wieger R. Punter, Odysseas Papapetrou, Minos Garofalakis
Subjects: Databases (cs.DB)

[19] arXiv:2309.11322 [pdf, other]

Vector database management systems: Fundamental concepts, use-cases, and current challenges

Toni Taipalus
Comments: 12 pages, 5 figures
Subjects: Databases (cs.DB)

https://arxiv.org/list/cs.DB/2308

66

https://arxiv.org/list/cs.DB/2308

https://www.scattered-thoughts.net/log/0040/

0040: olap survey, lobster, feldera, innovation,
wizard papers, umbra papers, olap papers

Published 2023-09-29

I published a shallow survey of OL.AP and HTAP query_engines.

The last 2/3rds or so of this post contains all the supporting notes. Also a lot of papers on strategies for low-
latency compilation.

https://www.scattered-thoughts.net/log/0041/

Column Sketches: A Scan Accelerator for Rapid and Robust Predicate
Evaluation (2018)

Goal is to accelarate column scans regardless of data distribution and workload.
Build a histogram of data. Divide into evenly full buckets. Give each bucket a short binary code.
Evaluate predicates against buckets first, and then scan for matching buckets.

Their experiments demonstrate good performance across different query selectivities with 1 byte codes over
uniformly distributed 32 bit integers.

Performance remains identical under data skew, while bitweaving degrades.

Builds much faster than bitweaving too. (Note that BtrBlocks builds histograms anyway - might be able to
produce the sketch almost for free.)

67

https://www.scattered-thoughts.net/log/0040/
https://www.scattered-thoughts.net/log/0041/

arXiv:2004.14471v1 [cs.DB] 29 Apr 2020

https://arxiv.org/pdf/2004.14471.pdf

Mainlining Databases: Supporting
Fast Transactional Workloads on
Universal Columnar Data File Formats

Tianyu Li Matthew Butrovich Amadou Ngom
litianyu@mit.edu mbutrovi@cs.cmu.edu angom@cs.cmu.edu
MIT Carnegie Mellon University Carnegie Mellon University
Wan Shen Lim Wes McKinney Andrew Pavlo
wanshenl@cs.cmu.edu wes@ursalabs.org pavlo@cs.cmu.edu
Carnegie Mellon University Ursa Labs Carnegie Mellon University

ABSTRACT

The proliferation of modern data processing tools has given
rise to open-source columnar data formats. The advantage
of these formats is that they help organizations avoid repeat-
edly converting data to a new format for each application.
These formats, however, are read-only, and organizations
must use a heavy-weight transformation process to load data
from on-line transactional processing (OLTP) systems. We
aim to reduce or even eliminate this process by developing a
storage architecture for in-memory database management
systems (DBMSs) that is aware of the eventual usage of
its data and emits columnar storage blocks in a universal
open-source format. We introduce relaxations to common
analytical data formats to efficiently update records and rely
on a lightweight transformation process to convert blocks
to a read-optimized layout when they are cold. We also de-
scribe how to access data from third-party analytical tools
with minimal serialization overhead. To evaluate our work,
we implemented our storage engine based on the Apache
Arrow format and integrated it into the DB-X DBMS. Our
experiments show that our approach achieves comparable
performance with dedicated OLTP DBMSs while enabling
orders-of-magnitude faster data exports to external data sci-
ence and machine learning tools than existing methods.

1 INTRODUCTION

Data analysis pipelines allow organizations to extrapolate in-

DUE0 VR . N WL :. O, | JRRPRON DR DN ST L L ST SuRR VISR | ORUR RRURRT,

Although a DBMS can perform some analytical duties,
modern data science workloads often involve specialized
frameworks, such as TensorFlow, PyTorch, and Pandas. Or-
ganizations are also heavily invested in personnel, tooling,
and infrastructure for the current data science eco-system
of Python tools. We contend that the need for DBMS to ef-
ficiently export large amounts of data to external tools will
persist. To enable analysis of data as soon as it arrives in
a database is, and to deliver performance gains across the
entire data analysis pipeline, we should look to improve a
DBMS’s interoperability with external tools.

If an OLTP DBMS directly stores data in a format used
by downstream applications, the export cost is just the cost
of network transmission. The challenge in this is that most
open-source formats are optimized for read/append oper-
ations, not in-place updates. Meanwhile, divergence from
the target format in the OLTP DBMS translates into more
transformation overhead when exporting data, which can
be equally detrimental to performance. A viable design must
seek equilibrium in these two conflicting considerations.

To address this challenge, we present a multi-versioned
DBMS that operates on a relaxation of an open-source colum-
nar format to support efficient OLTP modifications. The re-
laxed format can then be transformed into the canonical
format as data cools with a light-weight in-memory process.
We implemented our storage and concurrency control ar-
chitecture in DB-X [10] and evaluated its performance. We
target Apache Arrow, although our approach is also appli-

68

https://arxiv.org/pdf/2004.14471.pdf

End-to-end-query optimization

e Expression rewriting
e Join ordering
e Subquery flattening
e Filter / projection pushdown result
* Automatic in DuckDB ’
* Manual in Pandas

in=('a

https://www.youtube.com/watch?v=cBWITLTMwfQ

|l pandas

filtered_df = t[t['a’]

filtered_df.
min')

70

https://www.youtube.com/watch?v=cBWlTLTMwfQ

Execution

* Vectorized Processing (DuckDB)
o Optimized for CPU Cache locality
o SIMD instructions, Pipelining

o Small intermediates
(ideally fit in L1 cache)

Vectorized Processing

L
gl

-

L1 CACHE (32KB)

LATENCY: 1NS

L2 CACHE (256KB)
LATENCY: 5NS

L3 CACHE (20MB)
LATENCY: 20NS

MAIN MEMORY (16GB-2TB)

LATENCY: 100NS

71

= O techascent / tech.ml.dataset

<> Code () Issues

8 11 Pullrequests (» Actions [Projects () Security [~ Insights

® Watch 21 ~

<> Code ~

2 years ago
last month

2 years ago

2 years ago
last month

3 years ago

3 weeks ago
last year

last year

3 months ago

last month

/A tech.ml.dataset rubiic Q sponsor
master ~ $ 5branches 401 tags Go to file Add file »
@ ezand Bump fastexcel version and expose 'stableld' (#385) v cdb7icf 3 weeksago YO 1,645 commits
.cli-kondo Fixing metamorph and adding codegen step to project.clj.
B .github Run automated tests with different JDK versions (3)
BB dev-resources Parquet write simplification (#228)
@ dev/tech/v3/dataset Fixing metamorph and adding codegen step to project.cl].
B docs Release 7.021
BB graal-native/tech/v3/dataset Graal native 1 (#151)
B java Bump fastexcel version and expose 'stableld' (#385)
BB java_public_api/tech/v3 Hamf integration (#337)
BB java_test 6.069
BB neanderthal/tech/v3/dataset Tests pass with nil key eliding. (#364)
BB scripts Test that changing the type of an int does't break the join (#380)
BB src/tech/v3 Bump fastexcel version and expose 'stableld’ (5)

https://github.com/techascent/tech.ml.dataset

3 weeks ago

>_ + - |O| 1

% Fork 32 v W Starred 599 v

About

A Clojure high performance data
processing system

Readme
EPL-1.0 license
Activity

599 stars

O % < & B

21 watching

oG

32 forks

Report repository

Releases

© 401 tags

https://github.com/techascent/tech.ml.dataset

Accessing this from Clojure, through TMD, is also easy:

user> (require '[tmducken.duckdb :as duckdb])

nil

user> (require '[tech.v3.dataset :as ds])

nil

user> (duckdb/initialize!)

Sep 06, 2023 11:00:12 AM clojure.tools.logging$eval7454%$fn__7457 invoke
INFO: Attempting to load duckdb from "./binaries/libduckdb.so"

true

user> (def db (duckdb/open-db "data.ddb"))

#'user/db

user> (def conn (duckdb/connect db))

#'user/conn

user> (time (duckdb/sql->dataset conn "SELECT COUNT(*) AS n FROM data"))
"Elapsed time: 10.305756 msecs"

:_unnamed [1 1]:

]
| 400000000 |

https://techascent.com/blog/just-ducking-around.html

https://techascent.com/blog/just-ducking-around.html

Object Store Table Formats - columns without a database

1) Open standards for huge, petabyte-scale analytic tables that are accessible
for heterogeneous processing/querying - using Spark DataFrames, SparkSQL,
Dremio, Trino/Presto, etc.

2) “ACID for Big Data”

3) “Think about data, not about files” - “a table format is a way to organize a
dataset’s files to present them as a single table”

4) Efficient columnar storage within immutable file objects, e.g. Apache Parquet
5) Lightweight indexes and metadata

6) Transactional (i.e. put and delete, with full isolation)

74

Leading Open Table Formats

1) Databricks’ Delta Lake

2) Apache Hudi - donated by Uber, built to avoid
batch processing with Spark+HDEFES - focussed on
eventing

3) Apache Iceberg - donated by Netflix, built to
replace Hive due to correctness issues, also used by
Apple, Twitter, Expedia, etc.

75

@ A Thorough Comparison of Delta Lake, Iceberg and Hudi

A Quick Comparison

2020-05

Delta Lake (open source) Apache Iceberg Apache Hudi .
Transaction (ACID) ¥ Y Ve 2023 Update
wvee Y Y v Still no clear winner
Time travel h Y Y
Scharss o Y Y v (but probably Iceberg)
Data Mutation Y (update/delete/merge into) N Y (upsert)
Streaming Sink and source for spark struct Sink and source(wip) for Spark DeltaStreamer

streaming struct streaming, Flink (wip) HivelncrementalPuller
File Format Parquet Parquet, ORC, AVRO Parquet
Compaction/Cleanup Manual AP available (Spark Action) Manual and Auto
Integration DSv1, Deita connector DSv2, InputFormat DSv1, InputFormat
Multiple language support Scala/java/python Java/python Java/python
Storage Abstraction h { X N
API| dependency Spark-bundled Native/Engine bundied Spark-bundied

https://www.youtube.com/watch?v=Wx8G08jaedo

https://www.youtube.com/watch?v=Wx8G08jaedo

Take away
One Size Does Not Fit All

« Column store (stupid analytics)

« Array store (smart analytics)

« Streaming (one velocity solution)

« New SQL (another velocity solution)

« No SQL (low end; semi-structured data)

« Legacy stuff (in place now - but obsolete)

« One or more curation systems (800 pound gorilla)

Database Group
g AT Campunes Sewmce omet Artfury immeigeece (o8 }6

https://www.youtube.com/watch?v=KRcecxdGxvQ 77

https://www.youtube.com/watch?v=KRcecxdGxvQ

v0.11.0 has been released! Check the release notes

Apache Pinot™

Realtime distributed OLAP datastore, designed to answer OLAP queries with low latency

‘;;5;’;'3"> EVENTS

" USE-CASES

SOURCES 7

P VL Ff Fr Business
2 / = Intelligence

User-facing
.7 Data Products

_\}K/‘l Anomaly
Locooits Detection

. 137110
Pre Mater\a\‘la
er 3

Segment OPU'miz

Getting Started Join our Slack

Pinot is proven at scale in LinkedIn powers 50+ user-facing apps and serving 100k+ queries

78

ClickHouse Product v Use Cases Company v Docs Pricing % & | GetStarted
Blazing fast Linearly scalable o Fault tolerant
4 Exceeds other column-oriented database ‘*’ Incredible scaling both horizontally and oo. Supports async replication and can be
management systems vertically deployed across multiple datacenters
Hardware efficient Highly reliable Feature-rich
@ Processes analytical queries faster than ' Purely distributed system, including * User-friendly SQL query dialect, built-in
traditional row-oriented systems enterprise-grade security analytics capabilities, and more

Why choose ClickHouse?

& Blazing fast

ClickHouse uses all available hardware to its full potential to process each
query as fast as possible. Peak processing performance for a single query
stands at more than 2 terabytes per second (after decompression, only
used columns). In distributed setup reads are automatically balanced
among healthy replicas to avoid increasing latency.

¥ Easytouse

ClickHouse is simple and works out-of-the-box. It streamlines all your
data processing: ingest all your structured data into the system and it
becomes instantly available for building reports. SQL dialect allows
expressing the desired result without involving any custom non-standard
API that could be found in some DBMS.

O,

o Fault-tolerant

ClickHouse supports multi-master asynchronous replication and can be
deployed across multiple datacenters. All nodes are equal, which allows
avoiding having single points of failure. Downtime of a single node or the
whole datacenter won't affect the system's availability for both reads and
writes.

@ Highly reliable

ClickHouse can be configured as a purely distributed system located on
independent nodes, without any single points of failure. It also includes a
lot of enterprise-grade security features and fail-safe mechanisms
against human errors.

79

[tile]DB

Welcome to TileDB Cloud!

TUTORIALS

Start Here!

Product Tour
Serverless Compute 101
Task Graphs 101

Use Cases

CONCEPTS

Universal Data Management
Serverless Compute
Console and API

TileDB Cloud Internals
Pricing and Billing

Marketplace

HOW TO

Login

Embedded

Enterprise

TileDB Cloud is based on the TileDB Embedded open-source universal storage engine, which models and
efficiently stores all data as (dense or sparse) multi-dimensional arrays, providing a common APl and a
large number of APIs and tool integrations.

2@ L@@ =60 g spak’
L

TileDB Cloud

[Access control and logging
Serverless SQL, UDFs, task graphs

]
N

- o 4
Mariops e PYal Gphy

: |E5| pandas

t Pluggable Compute: Efficient APIs & Tool Integrations t t

Jupyter notebooks and dashboards

Embedded

at global scale

Unified data management
and easy serverless compute

aws
St

& Google Cloud

AMure

The TileDB Cloud stack at a glance

MINIO Lustre

Contact us

KCIHQEROW>>>

Apache Arrow Overview

Apache Arrow is a software development platform for building high performance applications that process and transport
large data sets. It is designed to both improve the performance of analytical algorithms and the efficiency of moving data
from one system or programming language to another.

A critical component of Apache Arrow is its in-memory columnar format, a standardized, language-agnostic specification
for representing structured, table-like datasets in-memory. This data format has a rich data type system (included nested
and user-defined data types) designed to support the needs of analytic database systems, data frame libraries, and more.

session_id timestamp source_ip

Row1 [BEEEPELLEN] 3/8/2012 2:44PM 99.155.155.225
LUV 1331246351 3/8/2012 2:38PM 65.87.165.114
Row3 [EEEEPEELY 3/8/2012 2:09PM 71.10.106.181

.
' O I u m n a r I S F a St LETE N 1331261196 3/8/2012 6:46PM 76.102.156.138

Traditional Memory Buffer Arrow Memory Buffer SELECT * FROM clickstream
WHERE session_id = 1331246351

The Apache Arrow format allows computational routines

1331246660 1331246660

and execution engines to maximize their efficiency when Rows IR sesson 11
99.155.155.225 1331244570
1331246351 1331261196

LT3 3/8/2012 2:38PM 3/8/2012 2:44PM

3/8/2012 2:38PM

m

Intel CPU

scanning and iterating large chunks of data. In particular,

65.87.165.114

the contiguous columnar layout enables vectorization e

timestamp

3/8/2012 2:09PM

LCIN 3/8/2012 2:09PM

using the latest SIMD (Single Instruction, Multiple Data) 7110108181

3/8/2012 6:46PM
99.155.155.225
65.87.165.114

1331261196

operations included in modern processors. PO o 2012 cason el

76.102.156.138 76.102.156.138

81

Impala

Copy & Convert

Parquet

Cassandra

Pandas

Parquet

Cassandra

Arrow Libraries

Standardization Saves

Without a standard columnar data format, every
database and language has to implement its own internal
data format. This generates a lot of waste. Moving data
from one system to another involves costly serialization
and deserialization. In addition, common algorithms must
often be rewritten for each data format.

Arrow's in-memory columnar data format is an out-of-
the-box solution to these problems. Systems that use or
support Arrow can transfer data between them at little-
to-no cost. Moreover, they don't need to implement
custom connectors for every other system. On top of
these savings, a standardized memory format facilitates
reuse of libraries of algorithms, even across languages.

The Arrow project contains libraries that enable you to work with data in the Arrow columnar format in many languages.
The C++, C#, Go, Java, JavaScript, Julia, and Rust libraries contain distinct implementations of the Arrow format. These
libraries are integration-tested against each other to ensure their fidelity to the format. In addition, Arrow libraries for C

(Glib), MATLAB, Python, R, and Ruby are built on top of the C++ library.

82

https://voltrondata.com/codex/a-new-frontier

1.2 Standardizing on Arrow

Arrow is an open source project that enables developers to efficiently build
fast, interoperable data systems based on open standards. The Arrow
project ticks all the boxes for a solid standard:

}R’AcﬁERow>>>

v Governance v Adoption

Figure 01.06. Arrow is a standard that we build with and trust, in part based on
these five factors.

83

https://voltrondata.com/codex/a-new-frontier

https://voltrondata.com/codex/a-new-frontier

1.2.1 The Arrow format

Arrow started as a standardized in-memory format for structured tabular
data. Why start there? Because when you are building data-intensive
analyses and applications, systems get stuck on two main tasks:

1. Moving data
When a workload is transport-bound (or input/output[l/O]-bound), the
speed of execution depends on the rate of transfer of data into or out of a
system.

2. Processing data
When a workload is compute-bound, the speed of execution depends on
the speed of the processor, whetheritisa CPU, GPU, oranother type of
hardware.

84

https://voltrondata.com/codex/a-new-frontier

[~ = Andy Pavilo
» DuckDB quacks Arrow: A zerc- X @ CMU_DB_12062021.pptx X O apachejarrow: Apache Arrow X + \) 4

C @ File | /Users/wesm/Downloads/CMU_DB_12062021.pptx.pdf

CMU_DB_12062021.pptx 4 /65 - 114% 4+ Z ®

Arrow has become a toolkit of
components for building an

OLAP DBMS: file format,
APACHE . . .
A ache Arrow execution engine, file storage,
P ARROW expression eval, networking
protocol/transport.

Columnar Format Apache Arrow is doing for data analytics what LLVM did for If you've ever worked on a

Interprocess and compiler infrastructure. Modular, reusable software components D_BMS’ you know tha_t these
e things are hard to build. Arrow
provides them for you.

for building high-performance analytics systems.

Query Engine
Components

Flight &
FlightSQL

JIT Expression
Compilation

Andy ...

The idea of composable DBMS parts
is not new. Back the late 1990s,
@surajitc proposed building RISC-

» DuckDB quacks Arrow: A zerc- X @ CMU_DB_12062021.pptx

C @ File | /Users/wesm/Downloads/CMU_DB_12062021.pptx.pdf

CMU_DB_12062021.pptx

x) apache/arrow: Apache Arrow |- X +

32 /65 - 114 + B 9

Network of query engines that “speak”
Arrow

Arrow-native

use Arrow internally

Support Arrow
C-data interface

columnar data exchange

Arrow-supported

can process and output
Arrow data

/

Dremio
DataFusion/Ballista/Polars
C++ execution engine (unnamed)
RAPIDS/BlazingSQL

\

DuckDB
Velox
(ClickHouse maybe someday)

BigQuery
Snowflake

(@i Andy Pavlo

<

To bUI|d a complete DBMS
using (ache v you still
need a SQL parser, optlmlzer,
buffer pool manager, and
storage Iayer

DAL) is @ good example
of how to do this, although
they don't use Arrow's Flight
SQL and other parts.

2D InfluxDB is working on a
new Arrow- -engine too.

Search projects Q Help Sponsors Login Register

pya rro W 1 4 U O L] 1 Latest version

. . .
pip install pyarrow [Released: Nov 8,2023

Python library for Apache Arrow

Navigation

Project description

~

D Release history

.’1‘, Download files

Project description

Python library for Apache Arrow

pypi | v14.0 [:jconda—forge

This library provides a Python API for functionality provided by the Arrow C++ libraries, along with tools for Arrow integration and interoperability with

pandas, NumPy, and other software in the Python ecosystem.

87

@~ DuckDB

Documentation v Blog GitHub

DuckDB is an in-process
SQL OLAP database management system

Installation 4

Why DuckDB?

o
©

Simple

e In-process, serverless
e C++11, no dependencies, single file build
e APIs for Python/R/Java/...

Fast

e Vectorized engine
e Optimized for analytics
e Parallel query processing

Documentation Live Demo

Feature-rich

e Transactions, persistence

e Extensive SQL support

e Direct Parquet & CSV querying
Free

e Free & Open Source
e Permissive MIT License

Contributing

88

Compare data engines running 17GB of Parquet data on GPUs and CPUs

Blog | Single GPU Outperforms 88 CPUs by 2.5X @

GPUs are essential for machine learning and Al
at enterprise scale — and are becoming
increasingly critical for data preprocessing
workloads. Recent benchmarking showed how a
single NVIDIA V100 GPU outperforms a total of
88 x86 CPU cores by ~2.5X. This also showed a
single GPU running on RAPIDS outperforms
Spark on an 88 core cluster by 20X. Get the full

results in this featured resource.

Hardware

193
200 sec
System Specifications

m 2x V1o 32 o8 [JECE
iee

2x E56-2699V4,

|Iiﬁil
sec
88 Cores Total

: E
= 10 sec
NVMe

Sﬁdr‘l:z PyARROW mnw») '“E"‘ Polars @@= DuckDE RAPIDS

[oATaEusion]

GP
D{rect)

L Benchmarking Data Engines

https://voltrondata.com/

https://voltrondata.com/

Swap Java-based engines with Velox for a 3X perf improvement (@Velox

Report | Velox: 2023 Project to Watch

v

Velox is an embeddable columnar database
engine designed for Arrow-based systems. This

modular, unification standard benefits

industries using and developing data
management systems. Learn how Velox breaks

down data silos and accelerates data

2 L Velox Data Infrastructure
processing.

“‘Data management systems like Presto and Spark typically have their own execution
engines and other components. Velox can function as a commaon execution engine
across different data management systems.”

Velox GitHub 2

Velox Data Thread Talk 2 Source: Facebook Engineering Blog. Diagram by Phillip Bell.

Velox Blog 2
Velox Research Paper from VLDB 2

https://voltrondata.com/

https://voltrondata.com/

https://voltrondata.com/

Flight SQL

BigQuery wire protocol

Database-specific

-

L Arrow-native

ADBC

Database-agnostic

libpg/Postgres
wire protocol

TDS/SQL Server
wire protocol

rRow-oriented

JDBC

ODBC

91

https://voltrondata.com/

— Result Set

Deserialization

C l i en t 'y " 4 q

c L :

.g Result |

+ headexr

© : e

= ' Result

(== S

o ‘ /

= |

5 Query:

< 'y
Server L 1 i j

L Query L Result Set
Execution Serialization
Time «
Axrxrow
Data

Client 5 =]

o Result '

- header .

@ 7N

o ./ Result

= ;

o |

c ! |

5 Query .

< : %

Server —= i
Query Ti——t Arrow

Execution

Time .

Data

https://voltrondata.com/

Figure 03.08.
Comparison of typical
client-server
communication versus
with Flight. Source:
“Benchmarking Apache

Arrow Flight - A wire-
speed protocol for data

transfer, querying and

microservices” by
Ahmad et al.

92

https://voltrondata.com/

Today's Topics

JUXT

Logical table
representation

b1

b2
b3
b4
b5

GIR|B[(R([2

EEIEARE

Row layout

ail

bt |cl |a2 | b2|c2

Column layout

al

a2 | a3 | a4 | a5 | bl

v

b2 | b3 | b4 | b5 | el

|

c2 | c3|ca|c5

l encoding

encoded chunk

encoded chunk

encoded chunk

94

THANK YOU A
QUESTIONS?

jdt@juxt.pro
@refset

JUXT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

