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https://www.youtube.com/watch?v=gQV-XrkJj2o
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1. Columnar data 101
2. Context & trends
3. Modern analytic systems
4. R&D

Today’s Topics
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https://www.youtube.com/watch?v=uikbtpVZS2s
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Column-oriented Memory BufferRow-oriented Memory Buffer
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The idea behind column-oriented storage is simple: don’t store all 
the values from one row together, but store all the values from each 
column together instead.

If each column is stored in a separate file, a query only needs 
to read and parse those columns that are used in that query, 
which can save a lot of work.
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https://www.youtube.com/watch?v=cBWlTLTMwfQ 12

https://www.youtube.com/watch?v=cBWlTLTMwfQ
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https://www.youtube.com/watch?v=cBWlTLTMwfQ


  

1) Columnar layout
2)  On-disk compression (e.g. Run-Length Encoding)
3)  ~Ideal cold storage

14



  
https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities 

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities
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https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities
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Context & Trends
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FORTRAN

“our primary objective was to permit people to concentrate on the essence of their 
problems and eliminate preoccupation with the mechanics of the computer”

- Irv Ziller, The Beginnings of Fortran

21https://www.youtube.com/watch?v=KohboWwrsXg 

https://www.youtube.com/watch?v=KohboWwrsXg


  XL Fortran: Optimization and Programming Guide
https://www.ibm.com/docs/en/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/proguide.pdf 22

https://www.ibm.com/docs/en/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/proguide.pdf
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https://www.copebit.ch/en/how-declarative-and-imperative-styles-differ-in-infrastructure-as-code/ 24

https://www.copebit.ch/en/how-declarative-and-imperative-styles-differ-in-infrastructure-as-code/
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https://www.youtube.com/watch?v=wTPGW1PNy_Y
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28https://gist.github.com/hellerbarde/2843375 

https://gist.github.com/hellerbarde/2843375
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The ebb and flow of relative bandwidth...

https://blog.enfabrica.net/the-next-step-in-high-performance-distributed-computing-systems-4f98f13064ac 30

https://blog.enfabrica.net/the-next-step-in-high-performance-distributed-computing-systems-4f98f13064ac


  

The Three Dimensions of Big Data Management

● Data Gravity – costs of moving

● Data Residency – legal implications

● Data Latency – the hardest technical challenge

https://intellyx.com/2022/09/19/gravity-residency-and-latency-balancing-the-three-dimensions-of-big-data/ 31

https://intellyx.com/2022/09/19/gravity-residency-and-latency-balancing-the-three-dimensions-of-big-data/


  

Mechanical Sympathy
● Mechanical sympathy is when you use a tool or system 

with an understanding of how it operates best

– You don’t need to be a hardware engineer

– You do need to understand how the hardware works and 
take that into consideration when you design software

https://dzone.com/articles/mechanical-sympathy 32

https://dzone.com/articles/mechanical-sympathy


  
https://www.infoq.com/presentations/mechanical-sympathy/ 33

https://www.infoq.com/presentations/mechanical-sympathy/
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Mechanical Sympathy in Software Design

● Keys to performance: minimize instructions, minimize data

– Do the most work in the fewest instructions

– Reduce the data being shunted around

● You achieve this by modeling the problem domain and 
eliminating non-essential complexity.

https://dzone.com/articles/mechanical-sympathy 35

https://dzone.com/articles/mechanical-sympathy


  

Mechanical Sympathy in Main Memory

● Bandwidth has exploded while latencies are the ~same

● To hide latency CPUs use evermore complex layers of caches

● CPUs hide memory latency using 3 heuristics:

– Temporal: Recent data will likely be required again soon

– Spatial: Adjacent data is likely to be required next

– Striding: Memory access is likely to follow simple patterns

https://mechanical-sympathy.blogspot.com/2012/08/memory-access-patterns-are-important.html 36

https://mechanical-sympathy.blogspot.com/2012/08/memory-access-patterns-are-important.html


  

The RUM Conjecture

37https://medium.com/@arpitbhayani/the-rum-conjecture-bce86c2517e3 

https://medium.com/@arpitbhayani/the-rum-conjecture-bce86c2517e3


  

A single algorithm can only minimize two out of: Read / Update / Memory overheads

38https://stratos.seas.harvard.edu/files/stratos/files/rum.pdf 

https://stratos.seas.harvard.edu/files/stratos/files/rum.pdf
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...as opposed to “Compute-Intensive”

Key qualities:

● Reliability (fault-tolerance)
● Scalability (response to load)
● Maintainability (simplicity)

40
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  “In a typical data warehouse, tables are often very wide: fact tables often have over 100 columns, sometimes several hundred”
42



  “We can only reconstruct a row because we know that the kth item in one column belongs to the same row as the kth item in another column.”
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Scanning Performance ∝ Bandwidth
● CPU Caches < Memory < Disk < Network

● Make efficient use of CPU cycles, 
keep the CPU fed!

– Exploit pipelining with “tight loops” 
(avoid bubbles and branch 
mispredictions)

– Use vectorized processing (use L1-
cache-sized record batches and avoid 
decompressing)

– Hardware parallelism Single 
instruction, multiple data (SIMD)

● ...avoid latency stalls!

“Next time you are developing an important algorithm, try pondering that a cache-miss is a lost opportunity to have executed ~500 CPU instructions!”
  - Martin Thompson
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Vectorized query engines
● Two key differences from tuple-at-a-time engines 

(Postgres etc.)

– Column oriented processing – Write query processing 
algorithms that operate on columns as long as possible in 
the execution plan. Refrain from working on tuples till 
late in the plan (e.g. during projecting result-set back to 
the user)

– Push batches of column vectors through the query plan tree 
– Instead of passing around tuple from one operator to 
another, pass column(s) containing a fixed number of 
records

46



  

Vectorized query processing
● Better cache locality and efficient utilization of CPU cache – we can 

quickly loop through tightly packed values of a column and do the necessary 
processing — predicate evaluation, arithmetic computations etc. Cache lines 
are filled with related values (from the same column) as opposed to 
heterogeneous values from multiple columns in a tuple where some columns 
may not even be touched by the query

● Better chance of native optimizations by the compiler – tight loop based 
vectorized algorithms are good candidates of automatic optimization by 
compilers

● Leverage hardware acceleration – well aligned column data in densely packed 
arrays is amenable to acceleration using SIMD instructions. Common 
operations like FILTER, SUM, MIN, MAX can be accelerated by an order of 
magnitude by exploiting data-level parallelism of SIMD instructions

● Directly operate on compressed columnar data – columnar format allows us to 
encode column values with lightweight compression algorithms (dictionary 
encoding, RLE etc) which trade compression ratio for better query 
performance

47



  

Writing columns
● Update-in-place approaches are not possible with compressed columns

● If you want to insert a row in the middle of a table, you most likely have to rewrite 
all the columns. As rows are identified by their position within a column, the 
insertion has to update all columns consistently

● Query engines often augment column files with LSM-trees

– All writes first go to an in-memory store

– When enough writes have accumulated, they are merged with the column files on disk 
and written to new files in bulk

– Queries need to examine both the column data on disk and the recent writes in 
memory, and combine the two

– The query optimizer hides this distinction from the user, such that inserts, 
updates, and deletes are immediately reflected in subsequent queries

48



  

Sorting of columns
● You can choose the columns by which the table 
should be sorted, given advance knowledge of common 
queries

● e.g. if queries often target date ranges, such as 
“last month”, sort by date_key first, then the 
query optimizer can scan only the rows from the 
last month, which will be much faster than scanning 
all rows

● A sorted column is likely to benefit heavily from 
run-length encoding and other compression

49



  

The Rise of Cloud Data Warehouses
● A cloud data warehouse makes no trade-offs 
from a traditional data warehouse, but 
extends capabilities and runs on a fully 
managed service in the cloud

● Cloud data warehousing offers instant 
scalability to meet changing business 
requirements and powerful data processing 
to support complex analytical queries 

50https://cloud.google.com/learn/what-is-a-data-warehouse 

https://cloud.google.com/learn/what-is-a-data-warehouse
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54https://medium.com/google-cloud/alloydb-new-kid-on-the-htap-block-188a732fdd35 

“HTAP” (Hybrid Transactional/Analytical Processing) – one system to rule them all?

https://medium.com/google-cloud/alloydb-new-kid-on-the-htap-block-188a732fdd35
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https://www.slideshare.net/nathanmarz/elephantdb 

The Lamda Architecture for “real time” analytics

61

Columnar data 
is good for 
_batch_

See also:

https://www.slideshare.net/nathanmarz/elephantdb
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R&D
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https://www.youtube.com/watch?v=KRcecxdGxvQ
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https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf 

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf
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(2018)

https://www.scattered-thoughts.net/log/0040/   

https://www.scattered-thoughts.net/log/0041/  

https://www.scattered-thoughts.net/log/0040/
https://www.scattered-thoughts.net/log/0041/
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https://arxiv.org/pdf/2004.14471.pdf  

https://arxiv.org/pdf/2004.14471.pdf


  

DuckDB...
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70https://www.youtube.com/watch?v=cBWlTLTMwfQ 

https://www.youtube.com/watch?v=cBWlTLTMwfQ
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72https://github.com/techascent/tech.ml.dataset 

https://github.com/techascent/tech.ml.dataset
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https://techascent.com/blog/just-ducking-around.html 
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Object Store Table Formats – columns without a database

1)  Open standards for huge, petabyte-scale analytic tables that are accessible 
for heterogeneous processing/querying - using Spark DataFrames, SparkSQL, 
Dremio, Trino/Presto, etc.

2)  “ACID for Big Data”

3)  “Think about data, not about files” - “a table format is a way to organize a 
dataset’s files to present them as a single table”

4)  Efficient columnar storage within immutable file objects, e.g. Apache Parquet

5)  Lightweight indexes and metadata

6)  Transactional (i.e. put and delete, with full isolation)

74



  

Leading Open Table Formats

1) Databricks’ Delta Lake

2) Apache Hudi - donated by Uber, built to avoid 
batch processing with Spark+HDFS - focussed on 
eventing

3) Apache Iceberg - donated by Netflix, built to 
replace Hive due to correctness issues, also used by 
Apple, Twitter, Expedia, etc.

75



  

2023 Update:
Still no clear winner
(but probably Iceberg)

76https://www.youtube.com/watch?v=Wx8G08jaedo 

https://www.youtube.com/watch?v=Wx8G08jaedo
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https://voltrondata.com/
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THANK YOU 🙏
QUESTIONS?

jdt@juxt.pro
@refset
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