

Columnar Data in 2024:
The Future of Efficient Data Analytics

Jeremy Taylor, Head of Product
jdt@juxt.pro
@refset

a
 g

la
cie

r w
ith

 a
ncie

n
t fro

ze
n

 co
lu

m
n

s o
f bin

a
ry da

ta
 visib

le
 w

ith
in

About Me
Ex-IBM

Head of Product, xtdb.com
@refset

4

ht
tp

s:
//w

w
w

.y
ou

tu
be

.c
om

/w
at

ch
?v

=
gQ

V
-X

rk
Jj

2o

https://www.youtube.com/watch?v=gQV-XrkJj2o

5

ht
tp

s:
//w

w
w

.y
ou

tu
be

.c
om

/w
at

ch
?v

=
Jx

M
z-

ty
ic

go

https://www.youtube.com/watch?v=JxMz-tyicgo

6

1. Columnar data 101
2. Context & trends
3. Modern analytic systems
4. R&D

Today’s Topics

https://www.youtube.com/watch?v=uikbtpVZS2s 8

https://www.youtube.com/watch?v=uikbtpVZS2s

9

Column-oriented Memory BufferRow-oriented Memory Buffer

10

The idea behind column-oriented storage is simple: don’t store all
the values from one row together, but store all the values from each
column together instead.

If each column is stored in a separate file, a query only needs
to read and parse those columns that are used in that query,
which can save a lot of work.

11

https://www.youtube.com/watch?v=cBWlTLTMwfQ 12

https://www.youtube.com/watch?v=cBWlTLTMwfQ

https://www.youtube.com/watch?v=cBWlTLTMwfQ 13

https://www.youtube.com/watch?v=cBWlTLTMwfQ

1) Columnar layout
2) On-disk compression (e.g. Run-Length Encoding)
3) ~Ideal cold storage

14

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

https://www.slideshare.net/databricks/the-parquet-format-and-performance-optimization-opportunities

17

Context & Trends

18

19

20

ht
tp

s:
//w

w
w

.y
ou

tu
be

.c
om

/w
at

ch
?v

=
N

M
W

zg
y8

F
sK

s

https://www.youtube.com/watch?v=NMWzgy8FsKs

FORTRAN

“our primary objective was to permit people to concentrate on the essence of their
problems and eliminate preoccupation with the mechanics of the computer”

- Irv Ziller, The Beginnings of Fortran

21https://www.youtube.com/watch?v=KohboWwrsXg

https://www.youtube.com/watch?v=KohboWwrsXg

 XL Fortran: Optimization and Programming Guide
https://www.ibm.com/docs/en/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/proguide.pdf 22

https://www.ibm.com/docs/en/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/proguide.pdf

23

https://www.copebit.ch/en/how-declarative-and-imperative-styles-differ-in-infrastructure-as-code/ 24

https://www.copebit.ch/en/how-declarative-and-imperative-styles-differ-in-infrastructure-as-code/

25https://www.youtube.com/watch?v=wTPGW1PNy_Y

https://www.youtube.com/watch?v=wTPGW1PNy_Y

26

27

28https://gist.github.com/hellerbarde/2843375

https://gist.github.com/hellerbarde/2843375

29https://gist.github.com/hellerbarde/2843375

https://gist.github.com/hellerbarde/2843375

The ebb and flow of relative bandwidth...

https://blog.enfabrica.net/the-next-step-in-high-performance-distributed-computing-systems-4f98f13064ac 30

https://blog.enfabrica.net/the-next-step-in-high-performance-distributed-computing-systems-4f98f13064ac

The Three Dimensions of Big Data Management

● Data Gravity – costs of moving

● Data Residency – legal implications

● Data Latency – the hardest technical challenge

https://intellyx.com/2022/09/19/gravity-residency-and-latency-balancing-the-three-dimensions-of-big-data/ 31

https://intellyx.com/2022/09/19/gravity-residency-and-latency-balancing-the-three-dimensions-of-big-data/

Mechanical Sympathy
● Mechanical sympathy is when you use a tool or system

with an understanding of how it operates best

– You don’t need to be a hardware engineer

– You do need to understand how the hardware works and
take that into consideration when you design software

https://dzone.com/articles/mechanical-sympathy 32

https://dzone.com/articles/mechanical-sympathy

https://www.infoq.com/presentations/mechanical-sympathy/ 33

https://www.infoq.com/presentations/mechanical-sympathy/

https://www.infoq.com/presentations/mechanical-sympathy/ 34

https://www.infoq.com/presentations/mechanical-sympathy/

Mechanical Sympathy in Software Design

● Keys to performance: minimize instructions, minimize data

– Do the most work in the fewest instructions

– Reduce the data being shunted around

● You achieve this by modeling the problem domain and
eliminating non-essential complexity.

https://dzone.com/articles/mechanical-sympathy 35

https://dzone.com/articles/mechanical-sympathy

Mechanical Sympathy in Main Memory

● Bandwidth has exploded while latencies are the ~same

● To hide latency CPUs use evermore complex layers of caches

● CPUs hide memory latency using 3 heuristics:

– Temporal: Recent data will likely be required again soon

– Spatial: Adjacent data is likely to be required next

– Striding: Memory access is likely to follow simple patterns

https://mechanical-sympathy.blogspot.com/2012/08/memory-access-patterns-are-important.html 36

https://mechanical-sympathy.blogspot.com/2012/08/memory-access-patterns-are-important.html

The RUM Conjecture

37https://medium.com/@arpitbhayani/the-rum-conjecture-bce86c2517e3

https://medium.com/@arpitbhayani/the-rum-conjecture-bce86c2517e3

A single algorithm can only minimize two out of: Read / Update / Memory overheads

38https://stratos.seas.harvard.edu/files/stratos/files/rum.pdf

https://stratos.seas.harvard.edu/files/stratos/files/rum.pdf

39

ht
tp

s:
//d

at
ai

nt
en

si
ve

.n
et

/

https://dataintensive.net/

...as opposed to “Compute-Intensive”

Key qualities:

● Reliability (fault-tolerance)
● Scalability (response to load)
● Maintainability (simplicity)

40

41

 “In a typical data warehouse, tables are often very wide: fact tables often have over 100 columns, sometimes several hundred”
42

 “We can only reconstruct a row because we know that the kth item in one column belongs to the same row as the kth item in another column.”

43

44

Scanning Performance ∝ Bandwidth
● CPU Caches < Memory < Disk < Network

● Make efficient use of CPU cycles,
keep the CPU fed!

– Exploit pipelining with “tight loops”
(avoid bubbles and branch
mispredictions)

– Use vectorized processing (use L1-
cache-sized record batches and avoid
decompressing)

– Hardware parallelism Single
instruction, multiple data (SIMD)

● ...avoid latency stalls!

“Next time you are developing an important algorithm, try pondering that a cache-miss is a lost opportunity to have executed ~500 CPU instructions!”
 - Martin Thompson

45

Vectorized query engines
● Two key differences from tuple-at-a-time engines

(Postgres etc.)

– Column oriented processing – Write query processing
algorithms that operate on columns as long as possible in
the execution plan. Refrain from working on tuples till
late in the plan (e.g. during projecting result-set back to
the user)

– Push batches of column vectors through the query plan tree
– Instead of passing around tuple from one operator to
another, pass column(s) containing a fixed number of
records

46

Vectorized query processing
● Better cache locality and efficient utilization of CPU cache – we can

quickly loop through tightly packed values of a column and do the necessary
processing — predicate evaluation, arithmetic computations etc. Cache lines
are filled with related values (from the same column) as opposed to
heterogeneous values from multiple columns in a tuple where some columns
may not even be touched by the query

● Better chance of native optimizations by the compiler – tight loop based
vectorized algorithms are good candidates of automatic optimization by
compilers

● Leverage hardware acceleration – well aligned column data in densely packed
arrays is amenable to acceleration using SIMD instructions. Common
operations like FILTER, SUM, MIN, MAX can be accelerated by an order of
magnitude by exploiting data-level parallelism of SIMD instructions

● Directly operate on compressed columnar data – columnar format allows us to
encode column values with lightweight compression algorithms (dictionary
encoding, RLE etc) which trade compression ratio for better query
performance

47

Writing columns
● Update-in-place approaches are not possible with compressed columns

● If you want to insert a row in the middle of a table, you most likely have to rewrite
all the columns. As rows are identified by their position within a column, the
insertion has to update all columns consistently

● Query engines often augment column files with LSM-trees

– All writes first go to an in-memory store

– When enough writes have accumulated, they are merged with the column files on disk
and written to new files in bulk

– Queries need to examine both the column data on disk and the recent writes in
memory, and combine the two

– The query optimizer hides this distinction from the user, such that inserts,
updates, and deletes are immediately reflected in subsequent queries

48

Sorting of columns
● You can choose the columns by which the table
should be sorted, given advance knowledge of common
queries

● e.g. if queries often target date ranges, such as
“last month”, sort by date_key first, then the
query optimizer can scan only the rows from the
last month, which will be much faster than scanning
all rows

● A sorted column is likely to benefit heavily from
run-length encoding and other compression

49

The Rise of Cloud Data Warehouses
● A cloud data warehouse makes no trade-offs
from a traditional data warehouse, but
extends capabilities and runs on a fully
managed service in the cloud

● Cloud data warehousing offers instant
scalability to meet changing business
requirements and powerful data processing
to support complex analytical queries

50https://cloud.google.com/learn/what-is-a-data-warehouse

https://cloud.google.com/learn/what-is-a-data-warehouse

51

52

54https://medium.com/google-cloud/alloydb-new-kid-on-the-htap-block-188a732fdd35

“HTAP” (Hybrid Transactional/Analytical Processing) – one system to rule them all?

https://medium.com/google-cloud/alloydb-new-kid-on-the-htap-block-188a732fdd35

55

56

57

58

59

60

https://www.slideshare.net/nathanmarz/elephantdb

The Lamda Architecture for “real time” analytics

61

Columnar data
is good for
batch

See also:

https://www.slideshare.net/nathanmarz/elephantdb

62

R&D

63

64

ht
tp

s:
//w

w
w

.y
ou

tu
be

.c
om

/w
at

ch
?v

=
K

R
ce

cx
dG

xv
Q

https://www.youtube.com/watch?v=KRcecxdGxvQ

65

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf

https://stratos.seas.harvard.edu/files/stratos/files/columnstoresfntdbs.pdf

66https://arxiv.org/list/cs.DB/2308

https://arxiv.org/list/cs.DB/2308

67

(2018)

https://www.scattered-thoughts.net/log/0040/

https://www.scattered-thoughts.net/log/0041/

https://www.scattered-thoughts.net/log/0040/
https://www.scattered-thoughts.net/log/0041/

68

https://arxiv.org/pdf/2004.14471.pdf

https://arxiv.org/pdf/2004.14471.pdf

DuckDB...

69

70https://www.youtube.com/watch?v=cBWlTLTMwfQ

https://www.youtube.com/watch?v=cBWlTLTMwfQ

71

72https://github.com/techascent/tech.ml.dataset

https://github.com/techascent/tech.ml.dataset

73

https://techascent.com/blog/just-ducking-around.html

https://techascent.com/blog/just-ducking-around.html

Object Store Table Formats – columns without a database

1) Open standards for huge, petabyte-scale analytic tables that are accessible
for heterogeneous processing/querying - using Spark DataFrames, SparkSQL,
Dremio, Trino/Presto, etc.

2) “ACID for Big Data”

3) “Think about data, not about files” - “a table format is a way to organize a
dataset’s files to present them as a single table”

4) Efficient columnar storage within immutable file objects, e.g. Apache Parquet

5) Lightweight indexes and metadata

6) Transactional (i.e. put and delete, with full isolation)

74

Leading Open Table Formats

1) Databricks’ Delta Lake

2) Apache Hudi - donated by Uber, built to avoid
batch processing with Spark+HDFS - focussed on
eventing

3) Apache Iceberg - donated by Netflix, built to
replace Hive due to correctness issues, also used by
Apple, Twitter, Expedia, etc.

75

2023 Update:
Still no clear winner
(but probably Iceberg)

76https://www.youtube.com/watch?v=Wx8G08jaedo

https://www.youtube.com/watch?v=Wx8G08jaedo

77https://www.youtube.com/watch?v=KRcecxdGxvQ

https://www.youtube.com/watch?v=KRcecxdGxvQ

78

79

81

82

83

ht
tp

s:
//v

ol
tr

on
da

ta
.c

om
/c

od
ex

/a
-n

ew
-f

ro
nt

ie
r

https://voltrondata.com/codex/a-new-frontier

84

ht
tp

s:
//v

ol
tr

on
da

ta
.c

om
/c

od
ex

/a
-n

ew
-f

ro
nt

ie
r

https://voltrondata.com/codex/a-new-frontier

85

86

87

88

89https://voltrondata.com/

https://voltrondata.com/

90https://voltrondata.com/

https://voltrondata.com/

91https://voltrondata.com/

https://voltrondata.com/

92https://voltrondata.com/

https://voltrondata.com/

1. Columnar data 101
2. Context & trends
3. Modern analytic systems
4. R&D

Today’s Topics

94

THANK YOU 🙏
QUESTIONS?

jdt@juxt.pro
@refset

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

