
Git Plumbing

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

User friendly commands are the porcelain

Inner work commands are the plumbing

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

The Heart of Git

Git is a content addressable file-system

A Typical Filesystem

drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 3_Way_Merge
drwxr-xr-x 4 mattford staff 128 Jun 21 13:57 Fast_Foward_Merge
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 Merge
drwxr-xr-x 4 mattford staff 128 Jun 21 13:57 Rebase
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 Reset_Hard
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 Resetting_Hard
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 Resetting_Mixed
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 Simple_Conceptual_Model
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 The_Final_Picture
drwxr-xr-x 3 mattford staff 96 Jun 21 13:57 Working_the_Diagram
-rw-r--r-- 1 mattford staff 11778 Jun 21 13:57 git-deep-dive.org
-rw-r--r-- 1 mattford staff 9842 Jun 21 14:41 git-plumbing.md

Key Value pairs where the key (filename) looks up the value(content)
of the file.

A Content Addressable File-system

"hello world" -> hello world
"lots of data..." -> lots of data...
"ab345...def34" -> ab345...def34

We lookup the contents of a file using the files own
contents!

Why do we want to do this?

The Tao of Content Addressable File-systems and
VCS's

A Version Control System (VCS) wants to know if the file it's looking at is already

stored in the VCS's persistence layer.

What better way to do that than using it's own content as a key for

the lookup? This is simply set membership.

But what if the content (key) is very long? We still want efficiency and speed...

Digests to the Rescue!

Digests are the outputs of class of functions know as hashes.

A hash function takes arbitrary data of any size and returns data of

a fixed size (the digest).

It is a "function" in the mathematical sense of the word i.e,

given the same data input you will always get the same digest.

It may be the case that two different sets of data produce the same

digest (but let's forget about this)

With Digests

Content Addressable file-system:

"Hello World!" -> "Hello World!"

With

hash("Hello World!") = "XJKT"

Becomes

"XJKT" -> "Hello World!"

Why are you so good Mr Digest?

Hash functions allow any file content of any size to be represented

by a digest.

Assuming our VCS uses a content addressable file-system as its

back-end, then every time the VCS wants to know if a file changes, it
calculates the digest and looks it up in the backend.

if the file exists then it's unchanged

if the file doesn't exist then it has changed

This much quicker than using diff'ing algorithms to work out if
there's been a change or not. These calculations can be deferred

until when the user needs them.

So many good Digest things

What other advantage is there of using content as the lookup key?

renaming?

deduplication?

Git uses, by default, SHA-1 has the hashing function

Our first plumbing command!

echo 'Hello World!' | git hash-object --stdin

Without options hash-object just returns the digest

Writey, write, write

hash-object has more options. We can write content to backend/db/persistence-
layer/content-addressable-file-system by passing -w .

echo 'Hello World!' | git hash-object -w --stdin

Where does this now live?

ls -l .git/objects/98/0a0d5f19a64b4b30a87d4206aade58726b60e3

All content for git lives in objects in the

.git/objects/ directory.

The naming scheme is simple:

first 2 digits of the hash form a directory

remaining 38 digits are the name of the object(file)

Ready, read, read

We can fetch the data out the db with

git cat-file -p 980a0d5f19a64b4b30a87d4206aade58726b60e3

And view the data with

ls -l .git/objects/* | head -n 15q

Seeing the wood for the trees

What's missing now we can read and write all our content?

How do we store file names and file-system hierarchy? Meta-data in general?

Tree objects do this!

Simple Conceptual Model

A Real Tree

git cat-file -p main^{tree} | head -n 10

Notice the columns

permissions : type : sha-1 : file-name

Growing (making) a Tree (object)

The "index" or "staging area" is a essentially the content of a tree object that's being

built up whilst we work.

With this in mind We now have enough machinery to begin to talk about what

happens when we stage (git add) files:

write the content object to the back-end

add to the index (the tree object to be) the data about the
content

Plumbing git add

echo "JUXT forever" | git hash-object --stdin -w

git update-index --add --cacheinfo 100644 \
 0a67bfca9b837c46c80e9631d7407e496878173b juxt.txt

$ git write-tree
d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git cat-file -p d8329fc1cc938780ffdd9f94e0d364e0ea74f579
100644 blob 0a67bfca9b837c46c80e9631d7407e496878173b juxt.txt

An Object Still Missing

We've added our content to the persistence layer.

We've added to the index the reference to the content and given it
a filename, and permissions (it's metadata).

(we optionally loop here)

We've written the index as a tree object to the persistence layer.

Potentially we repeat the whole process.

What do we have?

There are now lots of trees...

What are we missing?

There's now lots of unordered, unrelated trees.

Commit's to the rescue

If we had an ordering of the trees we've been creating in our
update loop - what would we have?

A history of state! Snapshots of the working directory over the
changes.

Working the Diagram

What else can a Commit do for us?

Considering a VCS what other features are required?

Who?

When?

Why?

Basically work related Metadata

A commit object does all this! The parent reference provides the

ordering.

What does a Commit look like?

$ git log

$ git cat-file -p 7c721
tree 236a0d5ad63e7b6883d40e843b30ebbc374d6acf
author Matt Ford <matt@dancingfrog.co.uk> 1718981594 +0100
committer Matt Ford <matt@dancingfrog.co.uk> 1718981594 +0100

First pass

Is there anything another layer of indirection can't
solve?

Commit objects are great'n'all but they are not very friendly.

We want a humane way of talking about commits

find .git/refs

Compare with

git branch

But what do these refs contain?

cat .git/refs/heads/master

So a ref in the heads folder is named for the local

branch it represents.

It's contents are the digest of the Commit object it points to.

You can unofficially create a ref with something like

echo 1a410efbd13591db07496601ebc7a059dd55cfe9 > .git/refs/heads/master

where the digest points to a commit object.

The Final Picture

Refs and branches

The official way to create a ref is

git update-ref refs/heads/master 1a410efbd13591db07496601ebc7a059dd55cfe9

What happens when we create a branch?

git branch <branch>

Git takes the digest of the last commit object and writes it to a

ref file named as <branch> .

BUT HOW DO WE KNOW THE LAST COMMIT OBJECT?

Yet another redirection!!

cat .git/HEAD

it's a symbolic reference to another reference!

to be detached: occasionally HEAD will not point to another

reference but instead will contain a Commit Object digest (or
perhaps a tag)

it typically means you are some point in a branches history and not
at HEAD.

Tag this, tag that.

Tags provide a human friendly name to a point in time on a branch.

There are two types of tags.

Tag Objects or an annotated tag, like a commit object in function.
Commit Objects point to a tree whereas a Tag object points to a

commit. A reference is created that points to the Tag object.

Tag reference or lightweight tag: no tag object is created but a tag

reference is created that points to the commit.

Summarize this!

central concept: content-addressable-file-system

content objects: addressable by digest

tree objects: grouping content objects

an index structure (staging area) containing references to tree and
hash objects

commit objects: provide an ordering by parent relationship, point to
tree objects, have metadata

refs: files, friendly named, that contain commit objects digests

HEAD a reference to a ref, keeps track of the current commit

tags: pointers to specific commits.

Together time

How does our model work with common operations?

We've covered:

staging

commit

branching

tags

Diffing Commits

What's the approach?

What we can we reason out?

Analyse the tree structure

Fast Forward Merge (1)

Fast Foward Merge (2)

3 Way Merge (1)

3 Way Merge (2)

Rebase

Resetting

