
RUST, FOR CLJ DEVS



GOALS

• Talk about personal experience of using rust


• Highlight the rewarding and challenging parts


• What's similar, what's very different



CONTEXT

I am here

Or maybe here



THE REWARDING BITS

• Dev experience


• Type system


• Enums


• Pattern matching


• Mutability


• Error handling


• Borrow checking



DEV LOOP

• Emacs


• rust-mode


• rust-analyser


• flycheck-rust


• VSCode


• rust-analyzer


• Debugging support



TYPE SYSTEM

• Primitive types: bool, i32, f64,


• Sequence types: tuples, arrays, slices


• User defined: structs, enums


• Trait types


• Function types



ENUMS

• Sum type


• Associated data


• Pattern matching


• Heterogenous collections



TYPE STATE PATTERN

• Define possible states for struct


• Define struct to be generic over state


• Define state specific functions


• Define transition functions



TYPE STATE PATTERN



PATTERN MATCHING

• match the structure of a value


• bind variables to its parts


• Expression, can return values


• Literals, named variables, ranges


• Enums



PATTERN MATCHING

• Destructuring


• match nested structs, enums


• Conditionals



MUTABILITY

• Immutable by default


• Borrow checker controls 
mutation



OPTION & RESULT
ERROR HANDLING

• Option


• when a value can be absent


• Result


• when a value can be either valid or 
error


• ? Operator for early exits



BORROW CHECKER

• Ownership rules


• Each value in Rust has an 
owner.


• There can only be one owner 
at a time.


• When the owner goes out of 
scope, the value will be 
dropped.



REFERENCES
BORROW CHECKER

• Each value in Rust has an owner.


• There can only be one owner at a time.


• At any given time, you can have either 
one mutable reference or any number 
of immutable references.


• References must always be valid.


• Like, compile time read-write locking



THE CHALLENGING BITS

• Shared-state


• Collections


• Functions and Closures


• Concurrency



SHARED STATE



COLLECTIONS

• Vec, HashMap, HashSet


• map, filter, fold, flatten etc.


• Collections are typed and 
homogeneous


• In-place updates



FUNCTIONS AND CLOSURES

• fn is a type


• Functions coerce to fn


• No capture


• Closures are traits


• Anonymous functions that 
capture env


• Fn, FnMut, FnOnce



CLOSURES

• Borrow rules apply to closure 
captures


• Compiler decides


• Immutable borrow, Fn


• Mutable borrow, FnMut


• Owned, FnOnce


• move to be explicit



CLOSURES GET MESSY



CONCURRENCY

• Fearless concurrency


• Only if you don’t fear 20+ line 
compiler errors!


• async/await


• ‘static + Send



WHAT I MISS FROM CLOJURE

• REPL


• Collections, specially heterogeneous data


• Atoms


• Ease of exploration


• Macros



WHAT I MIGHT MISS FROM RUST

• The rust compiler's amazing error messages!


• Ease and confidence of refactoring code


• Enums


• Error handling with Option and Result types



CONCLUSION

• In my experience, rust and clojure are quite complimentary to each other. Areas where rust fades 
have quite a bit of overlap with Clojure's strengths and vice-versa.


• Learning rust over the past 5 months has been a great roller-coaster ride and hopefully it will 
help me improve my Clojure skills too


• References


• [[https://gist.github.com/oakes/4af1023b6c5162c6f8f0][rust for clojurists]]


• https://doc.rust-lang.org/stable/rust-by-example/


• https://doc.rust-lang.org/stable/book/


