
RUST, FOR CLJ DEVS



GOALS

• Talk about personal experience of using rust 

• Highlight the rewarding and challenging parts 

• What's similar, what's very different



CONTEXT

I am here

Or maybe here



THE REWARDING BITS

• Dev experience 

• Type system 

• Enums 

• Pattern matching 

• Mutability 

• Error handling 

• Borrow checking



DEV LOOP

• Emacs 

• rust-mode 

• rust-analyser 

• flycheck-rust 

• VSCode 

• rust-analyzer 

• Debugging support



TYPE SYSTEM

• Primitive types: bool, i32, f64, 

• Sequence types: tuples, arrays, slices 

• User defined: structs, enums 

• Trait types 

• Function types



ENUMS

• Sum type 

• Associated data 

• Pattern matching 

• Heterogenous collections



TYPE STATE PATTERN

• Define possible states for struct 

• Define struct to be generic over state 

• Define state specific functions 

• Define transition functions



TYPE STATE PATTERN



PATTERN MATCHING

• match the structure of a value 

• bind variables to its parts 

• Expression, can return values 

• Literals, named variables, ranges 

• Enums



PATTERN MATCHING

• Destructuring 

• match nested structs, enums 

• Conditionals



MUTABILITY

• Immutable by default 

• Borrow checker controls 
mutation



OPTION & RESULT
ERROR HANDLING

• Option 

• when a value can be absent 

• Result 

• when a value can be either valid or 
error 

• ? Operator for early exits



BORROW CHECKER

• Ownership rules 

• Each value in Rust has an 
owner. 

• There can only be one owner 
at a time. 

• When the owner goes out of 
scope, the value will be 
dropped.



REFERENCES
BORROW CHECKER

• Each value in Rust has an owner. 

• There can only be one owner at a time. 

• At any given time, you can have either 
one mutable reference or any number 
of immutable references. 

• References must always be valid. 

• Like, compile time read-write locking



THE CHALLENGING BITS

• Shared-state 

• Collections 

• Functions and Closures 

• Concurrency



SHARED STATE



COLLECTIONS

• Vec, HashMap, HashSet 

• map, filter, fold, flatten etc. 

• Collections are typed and 
homogeneous 

• In-place updates



FUNCTIONS AND CLOSURES

• fn is a type 

• Functions coerce to fn 

• No capture 

• Closures are traits 

• Anonymous functions that 
capture env 

• Fn, FnMut, FnOnce



CLOSURES

• Borrow rules apply to closure 
captures 

• Compiler decides 

• Immutable borrow, Fn 

• Mutable borrow, FnMut 

• Owned, FnOnce 

• move to be explicit



CLOSURES GET MESSY



CONCURRENCY

• Fearless concurrency 

• Only if you don’t fear 20+ line 
compiler errors! 

• async/await 

• ‘static + Send



WHAT I MISS FROM CLOJURE

• REPL 

• Collections, specially heterogeneous data 

• Atoms 

• Ease of exploration 

• Macros



WHAT I MIGHT MISS FROM RUST

• The rust compiler's amazing error messages! 

• Ease and confidence of refactoring code 

• Enums 

• Error handling with Option and Result types



CONCLUSION

• In my experience, rust and clojure are quite complimentary to each other. Areas where rust fades 
have quite a bit of overlap with Clojure's strengths and vice-versa. 

• Learning rust over the past 5 months has been a great roller-coaster ride and hopefully it will 
help me improve my Clojure skills too 

• References 

• [[https://gist.github.com/oakes/4af1023b6c5162c6f8f0][rust for clojurists]] 

• https://doc.rust-lang.org/stable/rust-by-example/ 

• https://doc.rust-lang.org/stable/book/


